Skip to main content
Log in

Visible-Light Induced Photodegradation of Methyl Orange via Palladium Nanoparticles Anchored to Chrome and Nitrogen Doped TiO2 Nanoparticles

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The Cr/N–TiO2 and Pd/Cr/N–TiO2 were synthesized via sol–gel and photoreduction techniques respectively. Subsequently, optimized samples were utilized as photocatalyst agent to degradation of methyl orange under visible light. Tetraisopropyl orthotitanate, chromium nitrate Cr(NO3)3·9H2O, palladium nitrate Pd(NO3)2 and triethylamine was used as precursors. The crystalline structure, morphology, particle size, absorbance, band-gap and chemical structure of samples were characterized by X-ray diffraction, diffuse reflectance spectra, scanning electron microscopy, energy dispersive spectrometry and Fourier transform infrared (FT-IR) techniques, respectively. Results demonstrate that nature and amount of dopant affect photocatalytic activity. For degradation of methyl orange, optimum concentration of Cr3+ and Pd was obtained 2% and 10% respectively. After 240 min, under visible light, photocatalytic efficiency of 2%Cr/2%N–TiO2 was obtained 97.59%. Also, after 75 min, under ultra violet light, photocatalytic efficiency of 10%Pd/2%Cr/2%N–TiO2 was obtained 97.56%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. H. Safardoust-Hojaghan, M. Salavati-Niasari, Degradation of methylene blue as a pollutant with N-doped graphene quantum dot/titanium dioxide nanocomposite. J. Clean. Prod. 148, 31–36 (2017)

    Article  CAS  Google Scholar 

  2. A. Mills, S. Le Hunte, An overview of semiconductor photocatalysis. J. Photochem. Photobiol. A 108, 1–35 (1997)

    Article  CAS  Google Scholar 

  3. N.T. Nolan, M.K. Seery, S.C. Pillai, Spectroscopic investigation of the anatase-to-rutile transformation of sol–gel-synthesized TiO2 photocatalysts. J. Phys. Chem. C 113, 16151–16157 (2009)

    Article  CAS  Google Scholar 

  4. A. Amtout, R. Leonelli, Optical properties of rutile near its fundamental band gap. Phys. Rev. B 51, 6842–6851 (1995)

    Article  CAS  Google Scholar 

  5. C. Su, C.M. Tseng, L.F. Chen, B.H. You, B.C. Hsu, S.S. Chen, Sol–hydrothermal preparation and photocatalysis of titanium dioxide. Thin Solid Films 498, 259–265 (2006)

    Article  CAS  Google Scholar 

  6. M. Pelaez, N.T. Nolan, S.C. Pillai, M.K. Seery, P. Falaras, A.G. Kontos, P.S. Dunlop, J.W. Hamilton, J.A. Byrne, K. O’shea, A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl. Catal. B 125, 331–349 (2012)

    Article  CAS  Google Scholar 

  7. M. Hamadanian, A. Sadeghi Sarabi, A. Mohammadi Mehra, V. Jabbari, Photocatalyst Cr-doped titanium oxide nanoparticles: fabrication, characterization, and investigation of the effect of doping on methyl orange dye degradation. Mater. Sci. Semicond. Process. 21, 161–166 (2014)

    Article  CAS  Google Scholar 

  8. S.T. Hussain, A. Siddiqa, Iron and chromium doped titanium dioxide nanotubes for the degradation of environmental and industrial pollutants. Int. J. Environ. Sci. Technol. 8, 351–362 (2011)

    Article  CAS  Google Scholar 

  9. Y.-Y. Li, H.-S. Hao, L.-J. Wang, W.H. Guo, S.U. Qing, Q. Lei, W.-Y. Gao, G.-S. Liu, Z.-Q. Hu, Preparation and photoelectric properties of Ho3+-doped titanium dioxide nanowire downconversion photoanode. Trans. Nonferr. Metals Soc. China 25, 3974–3979 (2015)

    Article  CAS  Google Scholar 

  10. T. Sekino, Synthesis and Applications of Titanium Oxide Nanotubes, Inorganic and Metallic Nanotubular Materials, (Springer, Berlin, 2010), pp. 17–32

    Book  Google Scholar 

  11. Y.-C. Nah, I. Paramasivam, P. Schmuki, Doped TiO2 and TiO2 nanotubes: synthesis and applications. ChemPhysChem 11, 2698–2713 (2010)

    Article  CAS  PubMed  Google Scholar 

  12. M.R.D. Khaki, M.S. Shafeeyan, A.A.A. Raman, W.M.A.W. Daud, Application of doped photocatalysts for organic pollutant degradation—a review. J. Environ. Manag. 198, 78–94 (2017)

    Article  CAS  Google Scholar 

  13. Z. Zhang, Z. Huang, X. Cheng, Q. Wang, Y. Chen, P. Dong, X. Zhang, Product selectivity of visible-light photocatalytic reduction of carbon dioxide using titanium dioxide doped by different nitrogen-sources. Appl. Surf. Sci. 355, 45–51 (2015)

    Article  CAS  Google Scholar 

  14. R. Asahi, T. Morikawa, H. Irie, T. Ohwaki, Nitrogen-doped titanium dioxide as visible-light-sensitive photocatalyst: designs, developments, and prospects. Chem. Rev. 114, 9824–9852 (2014)

    Article  CAS  PubMed  Google Scholar 

  15. T. Morikawa, Y. Irokawa, T. Ohwaki, Enhanced photocatalytic activity of TiO2−x Nx loaded with copper ions under visible light irradiation. Appl. Catal. A 314, 123–127 (2006)

    Article  CAS  Google Scholar 

  16. S. Sakthivel, H. Kisch, Daylight photocatalysis by carbon-modified titanium dioxide. Angew. Chem. Int. Ed. 42, 4908–4911 (2003)

    Article  CAS  Google Scholar 

  17. H. Irie, Y. Watanabe, K. Hashimoto, Carbon-doped anatase TiO2 powders as a visible-light sensitive photocatalyst. Chem. Lett. 32, 772–773 (2003)

    Article  CAS  Google Scholar 

  18. G.C. Collazzo, E.L. Foletto, S.L. Jahn, M.A. Villetti, Degradation of direct black 38 dye under visible light and sunlight irradiation by N-doped anatase TiO2 as photocatalyst. J. Environ. Manag. 98, 107–111 (2012)

    Article  CAS  Google Scholar 

  19. S. In, A. Orlov, R. Berg, F. García, S. Pedrosa-Jimenez, M.S. Tikhov, D.S. Wright, R.M. Lambert, Effective visible light-activated B-doped and B, N-codoped TiO2 photocatalysts. J. Am. Chem. Soc. 129, 13790–13791 (2007)

    Article  CAS  PubMed  Google Scholar 

  20. T. Umebayashi, T. Yamaki, H. Itoh, K. Asai, Band gap narrowing of titanium dioxide by sulfur doping. Appl. Phys. Lett. 81, 454–456 (2002)

    Article  CAS  Google Scholar 

  21. J.C. Yu, L. Zhang, Z. Zheng, J. Zhao, Synthesis and characterization of phosphated mesoporous titanium dioxide with high photocatalytic activity. Chem. Mater. 15, 2280–2286 (2003)

    Article  CAS  Google Scholar 

  22. Q. Shi, D. Yang, Z. Jiang, J. Li, Visible-light photocatalytic regeneration of NADH using P-doped TiO2 nanoparticles. J. Mol. Catal. B 43, 44–48 (2006)

    Article  CAS  Google Scholar 

  23. T. Yamaki, T. Sumita, S. Yamamoto, Formation of TiO2−x Fx compounds in fluorine-implanted TiO2. J. Mater. Sci. Lett. 21, 33–35 (2002)

    Article  CAS  Google Scholar 

  24. H. Luo, T. Takata, Y. Lee, J. Zhao, K. Domen, Y. Yan, Photocatalytic activity enhancing for titanium dioxide by co-doping with bromine and chlorine. Chem. Mater. 16, 846–849 (2004)

    Article  CAS  Google Scholar 

  25. S. Ould-Chikh, O. Proux, P. Afanasiev, L. Khrouz, M.N. Hedhili, D.H. Anjum, M. Harb, C. Geantet, J.M. Basset, E. Puzenat, Photocatalysis with chromium-doped TiO2: bulk and surface doping. ChemSusChem 7, 1361–1371 (2014)

    Article  CAS  PubMed  Google Scholar 

  26. H. Zhu, J. Tao, X. Dong, Preparation and photoelectrochemical activity of Cr-doped TiO2 nanorods with nanocavities. J. Phys. Chem. C 114, 2873–2879 (2010)

    Article  CAS  Google Scholar 

  27. I. Baklanova, V. Krasil’nikov, V. Zhukov, O. Gyrdasova, M. Kuznetsov, L.Y. Buldakova, M.Y. Yanchenko, Synthesis, spectral, optical and photocatalytic properties of vanadium-and carbon-doped titanium dioxide with three-dimensional architecture of aggregates. J. Photochem. Photobiol. A 314, 6–13 (2016)

    Article  CAS  Google Scholar 

  28. S. Songara, M.K. Patra, M. Manoth, L. Saini, V. Gupta, G.S. Gowd, S.R. Vadera, N. Kumar, Synthesis and studies on photochromic properties of vanadium doped TiO2 nanoparticles. J. Photochem. Photobiol. A 209, 68–73 (2010)

    Article  CAS  Google Scholar 

  29. F. Chekin, S. Bagheri, S.B. Abd Hamid, Synthesis of Pt doped TiO2 nanoparticles: characterization and application for electrocatalytic oxidation of l-methionine. Sens. Actuators B 177, 898–903 (2013)

    Article  CAS  Google Scholar 

  30. M.A. Barakat, R.I. Al-Hutailah, E. Qayyum, J.N. Kuhn, Pt-doped TiO2 nanoparticles for photocatalytic degradation of phenols in wastewater. In: REWAS 2013. (John Wiley & Sons, Inc., Boston, 2013), pp. 309–322

    Google Scholar 

  31. N. Serpone, Is the band gap of pristine TiO2 narrowed by anion- and cation-doping of titanium dioxide in second-generation photocatalysts? J. Phys. Chem. B 110, 24287–24293 (2006)

    Article  CAS  PubMed  Google Scholar 

  32. Q. Xiao, J. Zhang, C. Xiao, Z. Si, X. Tan, Solar photocatalytic degradation of methylene blue in carbon-doped TiO2 nanoparticles suspension. Sol. Energy 82, 706–713 (2008)

    Article  CAS  Google Scholar 

  33. L. Ma, C. Yang, X. Tian, Y. Nie, Z. Zhou, Y. Li, Enhanced usage of visible light by BiSex for photocatalytic degradation of methylene blue in water via the tunable band gap and energy band position. J. Clean. Prod. 171, 538–547 (2018)

    Article  CAS  Google Scholar 

  34. J. Liao, S. Lin, L. Zhang, N. Pan, X. Cao, J. Li, Photocatalytic degradation of methyl orange using a TiO2/Ti mesh electrode with 3D nanotube arrays. ACS Appl. Mater. Interfaces 4 171–177 (2012)

    Article  CAS  PubMed  Google Scholar 

  35. Y. Li, X. Li, J. Li, J. Yin, Photocatalytic degradation of methyl orange by TiO2-coated activated carbon and kinetic study. Water Res. 40, 1119–1126 (2006)

    Article  CAS  PubMed  Google Scholar 

  36. X. Zheng, D. Li, X. Li, L. Yu, P. Wang, X. Zhang, J. Fang, Y. Shao, Y. Zheng, Photoelectrocatalytic degradation of rhodamine B on TiO2 photonic crystals. Phys. Chem. Chem. Phys. 16, 15299–15306 (2014)

    Article  CAS  PubMed  Google Scholar 

  37. Y.-M. Lin, Y.-H. Tseng, J.-H. Huang, C.C. Chao, C.-C. Chen, I. Wang, Photocatalytic activity for degradation of nitrogen oxides over visible light responsive titania-based photocatalysts. Environ. Sci. Technol. 40 1616–1621 (2006)

    Article  CAS  PubMed  Google Scholar 

  38. Y. Nakano, T. Morikawa, T. Ohwaki, Y. Taga, Deep-level optical spectroscopy investigation of N-doped TiO2 films. Appl. Phys. Lett. 86, 132104 (2005)

    Article  CAS  Google Scholar 

  39. O. Diwald, T.L. Thompson, E.G. Goralski, S.D. Walck, J.T. Yates, The effect of nitrogen ion implantation on the photoactivity of TiO2 rutile single crystals. J. Phys. Chem. B 108, 52–57 (2004)

    Article  CAS  Google Scholar 

  40. S. Yin, H. Yamaki, M. Komatsu, Q. Zhang, J. Wang, Q. Tang, F. Saito, T. Sato, Preparation of nitrogen-doped titania with high visible light induced photocatalytic activity by mechanochemical reaction of titania and hexamethylenetetramine. J. Mater. Chem. 13, 2996–3001 (2003)

    Article  CAS  Google Scholar 

  41. M. Maeda, T. Watanabe, Visible light photocatalysis of nitrogen-doped titanium oxide films prepared by plasma-enhanced chemical vapor deposition. J. Electrochem. Soc. 153, C186–C189 (2006)

    Article  CAS  Google Scholar 

  42. S. Sakthivel, M. Janczarek, H. Kisch, Visible light activity and photoelectrochemical properties of nitrogen-doped TiO2. J. Phys. Chem. B 108, 19384–19387 (2004)

    Article  CAS  Google Scholar 

  43. Z. Lin, A. Orlov, R.M. Lambert, M.C. Payne, New Insights into the origin of visible light photocatalytic activity of nitrogen-doped and oxygen-deficient anatase TiO2. J. Phys. Chem. B 109, 20948–20952 (2005)

    Article  CAS  PubMed  Google Scholar 

  44. S.K. Choi, S. Kim, S.K. Lim, H. Park, Photocatalytic comparison of TiO2 nanoparticles and electrospun TiO2 nanofibers: effects of mesoporosity and interparticle charge transfer. J. Phys. Chem. C 114, 16475–16480 (2010)

    Article  CAS  Google Scholar 

  45. W. Zhang, L. Zou, L. Wang, Photocatalytic TiO2/adsorbent nanocomposites prepared via wet chemical impregnation for wastewater treatment: a review. Appl. Catal. A 371, 1–9 (2009)

    Article  CAS  Google Scholar 

  46. G. Halasi, I. Ugrai, F. Solymosi, Photocatalytic decomposition of ethanol on TiO2 modified by N and promoted by metals. J. Catal. 281, 309–317 (2011)

    Article  CAS  Google Scholar 

  47. M. Hamadanian, M. Shamshiri, V. Jabbari, Novel high potential visible-light-active photocatalyst of CNT/Mo, S-codoped TiO2 hetero-nanostructure. Appl. Surf. Sci. 317, 302–311 (2014)

    Article  CAS  Google Scholar 

  48. N. Güy, S. Çakar, M. Özacar, Comparison of palladium/zinc oxide photocatalysts prepared by different palladium doping methods for congo red degradation. J. Colloid Interface Sci. 466, 128–137 (2016)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Masood Hamadanian or Hossein Safardoust-Hojaghan.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest regarding the publication of this manuscript.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammad-Salehi, H., Hamadanian, M. & Safardoust-Hojaghan, H. Visible-Light Induced Photodegradation of Methyl Orange via Palladium Nanoparticles Anchored to Chrome and Nitrogen Doped TiO2 Nanoparticles. J Inorg Organomet Polym 29, 1457–1465 (2019). https://doi.org/10.1007/s10904-019-01109-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-019-01109-z

Keywords

Navigation