Skip to main content
Log in

Iron and chromium doped titanium dioxide nanotubes for the degradation of environmental and industrial pollutants

  • Published:
International Journal of Environmental Science & Technology Aims and scope Submit manuscript

Abstract

Pure titanate nanotubes and titanate nanotubes doped with iron (III) and chromium (III) were fabricated by the hydrothermal treatment in methanol and sodium hydroxide mixture. The fabricated nano tubes have high surface area, high aspect ratio, consisted of very good surface morphology and high metals dispersion. The morphology, crysralline phase, composition were characterized by powdered X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Barrett-Joyner-Halenda methods and X-ray photoelectron spectroscopy. The results showed that nanotubes possess anatase phase and are composed up of 8–12 nm in diameter and 360–400 nm in length. The band gap of the titanium dioxide nanotubes was determined using transformed diffuse reflectance spectroscopy according to the Kubelka-Munk theory, showed pronounced band gap decrease on doped titanium dioxide nanotubes. The photocatalytic activity of doped nanotubes were evaluated in terms of degradation of phenol and photoreduction of carbon dioxide into methanol and ethanol under Ultra violet and Infra red irradiation. It was found that with iron (III) and chromium (III) doped titanium dioxide nanotubes exhibited much higher photocatalytic activity than undoped titanate nanotubes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Chen, Y. S.; Crittenden, J. C.; Hackney, S.; Sutter, L.; Hand, D. W., (2005). Preparation of a novel TiO2-based p-n junction nanotube photocatalyst. Environ. Sci. Tech., 39(5), 1201–1208 (8 pages).

    Article  CAS  Google Scholar 

  • Chen, Q.; Zhou, W.; Du, G.; Peng, L-M., (2002a). Titanate nanotubes made via single alkali treatment. Adv. Mat., 14(17), 1208–1211 (4 pages).

    Article  CAS  Google Scholar 

  • Chen, Q.; Du, G. H.; Zhang, S.; Peng, L. M., (2002b). The structure of trititanate nanotubes. Acta Cryst., B, 58(4), 587–593 (7 pages).

    Article  CAS  Google Scholar 

  • Chien, M. K.; Shih, L. H., (2007). An empirical study of the implementation of green supply chain management practices in the electrical and electronic industry and their relation to organizational performances. Int. J. Environ. Sci. Tech., 4(3), 383–394 (12 pages).

    Google Scholar 

  • Diebold, U., (2002). Structure and properties of TiO2 surfaces: A brief review. Appl. Phys. A., 76(5), 1–7 (7 pages).

    Google Scholar 

  • Dmitry, V.; Alexei, A. L.; Pawel, K.; Jens, M. F.; Frank, C. W.; Walsh, C., (2005). TiO2 nanotube-supported ruthenium (III) hydrated oxide:A highly active catalyst for selective oxidation of alcohols by oxygen. J. Catal., 235(1), 10–17 (8 pages).

    Article  Google Scholar 

  • Fujishima, A.; Zhang, X.; Chimie, C. R., (2006). Titanium dioxide photocatalysis: present situation and future approaches. Comptes Rendus Chimie, 9(5–6), 750–760 (11 pages).

    Article  CAS  Google Scholar 

  • Goyal, P.; Sharma, P.; Srivastava, S.; Srivastava, M. M., (2008). Saraca indica leaf powder for decontamination of Pb: removal, recovery, adsorbent characterization and equilibrium modeling. Int. J. Environ. Sci. Tech., 5(1), 27–34 (8 pages).

    CAS  Google Scholar 

  • Hou, L. R.; Yuan, C. Z.; Peng, Y., (2007). ynthesis and photocatalytic property of SnO2/TiO2 nanotubes composites. J. Hazard. Mater. B., 139(2), 310–315 (6 pages).

    Article  CAS  Google Scholar 

  • Huogen, Y.; Jiaguo, Y.; Chenga,SB.; Lin, J., (2007). Synthesis, characterization and photocatalytic activity of mesoporous titania nanorod/titanate nanotube composites. J. Hazard. Mater., 147(1–2), 581–587 (7 pages).

    Google Scholar 

  • Hussain, S. T.; Khan, K.; Hussain, R., (2009). Size control synthesis of sulfur doped titanium dioxide (anatase) nanoparticles, its optical property and its photo catalytic reactivity for CO2 + H2O conversion and phenol degradation. J. Nat. Gas Chem., 18, 383–391 (9 pages).

    Article  CAS  Google Scholar 

  • Ismael, C.; Freitas, J.; Longoa, C.; Aurelio, M.; Winnischofer, H.; Nogueira, A., (2007). Dye-sensitized solar cells based on TiO2 nanotubes and a solid-state electrolyte. J. Photochem. Photo. A: Chem., 189(2–3), 153–160 (8 pages).

    Google Scholar 

  • Jin, S.; Shiraishi, F., (2004). Photocatalytic activities enhanced for decompositions of organic compounds over metal-photodepositing titanium dioxide. Chem. Eng. J., 97(2–3), 203–211 (9 pages).

    Article  CAS  Google Scholar 

  • Kasuga, T.; Hiramatsu, M.; Hoson, A.; Sekino, T.; Niihara, K., (1998). Formation of titanium oxide nanotube. Lang. 14(12), 3160–3163 (4 pages).

    Article  CAS  Google Scholar 

  • Khanfekr, A.; Arzani, K.; Nemati, A.; Hosseini, M., (2009). Production of perovskite catalysts on ceramic monoliths with nanoparticles for dual fuel system automobiles. Int. J. Environ. Sci. Tech., 6(1), 105–112 (8 pages).

    CAS  Google Scholar 

  • Khan, M. A.; Jung, H. T.; Yang, O. B., (2006). Synthesis and characterization of ultrahigh crystalline TiO2 nanotubes. J. Phys. Chem., B 110(13), 6626–6630 (5 pages).

    Article  CAS  Google Scholar 

  • Kim, J. C. l.; Choi, J.; Bok Y; Jung, L.; Hong, H.; Yang, J. W.; Lee, W. I.; Hur, N. H., (2006). Enhanced photocatalytic activity in composites of TiO2 nanotubes and CdS nanoparticles. Chem. Commun., 5(48), 5024–5026 (3 pages).

    Article  Google Scholar 

  • Kochkar, H.; Turki, A.; Bergaoui, L.; Berhault, G.; Ghorbel, A., (2009). Study of Pd(II) adsorption over titanate nanotubes of different diameters. J. Coll. Interf. Sci., 331(1), 27–31 (5 pages).

    Article  CAS  Google Scholar 

  • Kuang, D.; Brillet, J.; Chen, P.; Takata, M.; Uchida, S.; Miura, H., (2008). Application of highly ordered TiO2 nanotube arrays in flexible dye-sensitized solar cells. ACS Nano, 2(1), 1113–1116 (4 pages).

    Article  CAS  Google Scholar 

  • Kubo, T.; Yamasaki, Y.; Honma, T.; Umesaki, N.; Nakahira, A., (2006). Synthesis of nanotubular H-Ti-O by hydrothermal process and its structural evaluation. Materials, 2, 1–6 (6 pages).

    Google Scholar 

  • Liang, H.; Li, X., (2009). Effects of structure of anodic TiO2 nanotube arrays on photocatalytic activity for the degradation of 2, 3-dichlorophenol in aqueous solution. J. Hazard. Mat., 162(2–3), 1415–1422 (8 pages).

    Article  CAS  Google Scholar 

  • Liu, S. M.; Gan, L. M.; Liu, L. H.; Zhang, W. D.; Zeng, H. C., (2002). Synthesis of Single-Crystalline TiO2 Nanotubes. Chem. Mater., 14(3), 1391–1397 (7 pages).

    Article  CAS  Google Scholar 

  • Macak, J. M.; Tsuchiya, H.; Ghicov, A.; Yasuda, K.; Hahn, R.; Bauer, S.; Schmuki, P., (2007). TiO2 nanotubes: Self-organized electrochemical formation, properties and applications. Curr. Opin. Solid. Mat. Sci., 11(1–2), 3–18 (16 pages).

    Article  CAS  Google Scholar 

  • Mohapatra, S. K.; Misra, M.; Mahajan, V. K.; Raja, K. S., (2007). A novel method for the synthesis of titania nanotubes using sonoelectrochemical method and its application for photoelectrochemical splitting of water. J. Catal., 246(2), 362–369 (7 pages).

    Article  CAS  Google Scholar 

  • Qamar, M.; Yoo, C. R.; Oh, H. J.; Lee, N. H.; Park, K.; Kim, D. H.; Lee, K. S.; Lee, W. J.; Kim, S. J., (2008). Preparation and photocatalytic activity of nanotubes obtained from titanium dioxide. Catal. Today, 131(1-4), 3–14 (12 pages).

    Article  CAS  Google Scholar 

  • Quan, X.; Yang, S. G.; Ruan, X. L.; Zhao, H. M., (2005). Preparation of titania nanotubes and their environmental applications as electrode. Environ. Sci. Tech., 39(10), 3770–3775 (6 pages).

    Article  CAS  Google Scholar 

  • Rafati, L.; Mahvi, A. H.; Asgari, A. R.; Hosseini, S. S., (2010). Removal of chromium (VI) from aqueous solutions using Lewatit FO36 nano ion-exchange resin. Int. J. Environ. Sci. Tech., 7(1), 147–156 (10 pages).

    CAS  Google Scholar 

  • Samarghandi, M. R.; Nouri, J.; Mesdaghinia, A. R.; Mahvi, A. H.; Nasseri, S.; Vaezi, F., (2007). Efficiency removal of phenol, lead and cadmium by means of UV/ TiO2/ H2O2 processes. Int. J. Environ. Sci. Tech., 4(1), 19–26 (8 pages).

    Article  CAS  Google Scholar 

  • Sekabira, K.; Oryem Origa, H.; Basamba, T. A.; Mutumba, G.; Kakudidi, E., (2010). Heavy metal assessment and water quality values in urban stream and rain water. Int. J. Environ. Sci. Tech., 7(4), 759–770 (12 pages).

    CAS  Google Scholar 

  • Sun, X.; Li, Y., (2003). Synthesis and characterization of ion exchangeable titania nanatubes. Chem. Eur. J., 9(10), 2229–2238 (10 pages).

    Article  CAS  Google Scholar 

  • Syoufian, A.; Oktaviano, H. S.; Nakashima, K., (2007). Photodecomposition of methylene blue as a target molecule. Catal. Commun., 8(5), 755–759 (5 pages).

    Article  CAS  Google Scholar 

  • Wang, W.; Varghese, O. K.; Paulose, M.; Grimes, C. A., (2004). A study on the growth and structure of titania nanotubes. J. Mat. Res., 19(2), 417–422 (6 pages).

    Article  Google Scholar 

  • Xu, J. C.; Mei, L.; Yong, X. G.; Li, H. L., (2005a). Zinc ions surface-doped titanium dioxide nanotubes and its photocatalysis activity for degradation of methyl orange in water. J. Mol. Catal. A: Chem., 226(1), 123–137 (15 pages).

    Article  CAS  Google Scholar 

  • Xu, M. W.; Bao, S. J.; Zhang, X. G., (2005b). Enhanced photocatalytic activity of magnetic TiO2 photocatalyst by silver deposition. Mater. Lett., 59(17), 2194–2198 (5 pages).

    Article  CAS  Google Scholar 

  • Yury, V.; Kirill, A.; Anton, I.; Alexei, V.; Johan, F.; Oleg, I.; Bulat, R.; Churagulov, O.; Yoshimura, M., (2000). Hydrothermal synthesis and characterization of nanorods of various titanates and titanium dioxide. J. Phys. Chem. B., 110(9), 4030–4038 (9 pages).

    Google Scholar 

  • Zhuang, H.; Lin, C.; Lai, Y.; Sun, L.; Li, J., (2007). Some Critical Structure Factors of Titanium Oxide Nanotube Array in Its Photocatalytic Activity. Environ. Sci. Tech., 41(13), 4735–4740 (6 pages).

    Article  CAS  Google Scholar 

  • Zhu, T.; Li, J.; Jin, Y. Q.; Liang, Y. H.; Ma, G. D., (2009). Gaseous phase benzene decomposition by non-thermal plasma coupled with nano titania catalyst. Int. J. Environ. Sci. Tech., 6(1), 141–148 (8 pages).

    CAS  Google Scholar 

  • Zhuang, M.; Jin, Z. S.; Yung, J. J.; Zhang, Z. J., (2004). Effect of annealing temperature on morphology, structure and photocatalytic behavior of nanotubed H2Ti2O4(OH)2. J. Molec. Catal. A: Chem., 217(1–2), 203–210 (8 pages).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. T. Hussain Ph.D..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hussain, S.T., Siddiqa, A. Iron and chromium doped titanium dioxide nanotubes for the degradation of environmental and industrial pollutants. Int. J. Environ. Sci. Technol. 8, 351–362 (2011). https://doi.org/10.1007/BF03326222

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03326222

Keywords

Navigation