Nano-synthesis, Biological Efficiency and DNA Binding Affinity of New Homo-binuclear Metal Complexes with Sulfa Azo Dye Based Ligand for Further Pharmaceutical Applications

Abstract

Five novel nanometric homo-binuclear complexes have been synthesized by the reaction of Cu(II), Co(II), Ni(II), Mn(II) and Zn(II) salts with a new azo dye 4-(2,4-dihydroxy-phenylazo)-N-thiazol-2-yl-benzenesulfonamide (H2L) with the aim to develop neoteric antitumor drugs. H2L has been prepared by coupling of sulfathiazole with resorcinol in order to comprise the bioactivities of sulfonamide part and azo group in the formed metal complexes which greatly enhance their bio-efficiencies. The ligand and complexes have been fully characterized using various spectral and analytical techniques. The obtained data indicated a dibasic tetradentate nature of ligand which coordinated via deprotonated phenolic oxygen, one azo group nitrogen, N-atom of thiazole ring, and sulfonamide oxygen forming tetrahedral geometry around the central metal ions. XRD data confirmed the crystalline nature of ligand and amorphous nature of the complexes. TEM images proved nanometeric size of complexes particles. The data of antimicrobial screening revealed that metal complexes are more potent than the azo dye ligand against varies micro-organisms. Anticancer activities of all compounds were evaluated against human liver carcinoma cells (HepG-2) and breast carcinoma cells (MCF-7). Cu(II) complex showed the highest anticancer activity (IC50 = 23.6 µg/ml) against HepG-2 cells. Co(II) complex displayed the greatest anticancer activity (IC50 of 7.67 µg/ml) contra MCF-7 cells. Electronic absorption and viscosity studies proved that H2L and complexes interact with DNA by intercalation binding and electrostatic force groove binding modes, respectively. The results of this study ascertain that Cu(II) and Co(II) complexes are very favorable candidates for further applications in cancer therapy.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    J. Feng, S. Zhang, W. Shi, Y. Zhang, Activity of sulfa drugs and their combinations against stationary phase B. burgdorferi in vitro. Antibiotics 6, 1–11 (2017)

    Article  CAS  Google Scholar 

  2. 2.

    D. Das, N. Sahu, S. Mondal, S. Roy, P. Dutta, S. Gupta, T.K. Mondal, C. Sinha, Structures, antimicrobial activity, DNA interaction and molecular docking studies of sulfamethoxazolyl-azo-acetylacetone and its nickel(II) complex. Polyhedron 99, 77–86 (2015)

    CAS  Article  Google Scholar 

  3. 3.

    J.-Y. Winum, A. Maresca, F. Carta, A. Scozzafava, C.T. Supuran, Poly pharmacology of sulfonamides: pazopanib, a multitargeted receptor tyrosine kinase inhibitor in clinical use, potently inhibits several mammalian carbonic anhydrases. Chem. Commun. 48, 8177–8179 (2012)

    CAS  Article  Google Scholar 

  4. 4.

    G. Choquet-Kastylevsky, T. Vial, J. Descotes, Allergic adverse reactions to sulfonamides. Curr. Allergy Asthma Rep. 2, 16–25 (2002)

    PubMed  Article  Google Scholar 

  5. 5.

    G.C. Slatore, A.S. Tilles, Sulfonamide hypersensitivity. Immunol. Allergy Clin. N. Am. 24, 477–490 (2004)

    Article  Google Scholar 

  6. 6.

    M. Summan, A.E. Cribb, Novel non-labile covalent binding of sulfamethoxazole reactive metabolites to cultured human lymphoid cells. Chem. Biol. Interact. 142, 155–173 (2002)

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    J.H. Al-Fahemi, A.M. Khedr, I. Althagafi, N.M. El-Metwaly, F.A. Saad, H.A. Katouah, Green synthesis approach for novel benzenesulfonamide nanometer complexes with elaborated spectral, theoretical and biological treatments. Appl. Organomet. Chem.32, e4460 (2018)

    Article  CAS  Google Scholar 

  8. 8.

    E.M. Mabrouk, K.A. Al-Omary, A.S. Al-Omary, E.H. El-Mossalamy, Electrochemical and spectral studies of some sulfa drug azo dyes and their metal complexes in aqueous solution. J. Adv. Chem. 14, 6021–6032 (2018)

    Article  Google Scholar 

  9. 9.

    Z.H. Chohan, H.A. Shad, Sulfonamide-derived compounds and their transition metal complexes: synthesis, biological evaluation and X-ray structure of 4 –bromo-2-[(E)-{4-[(3,4-dimethylisoxazol-5 yl)sulfamoyl]phenyl}-iminiomethyl]phenolate. Appl. Organometal. Chem. 25, 591–600 (2011)

    CAS  Article  Google Scholar 

  10. 10.

    M.S. Iqbal, A.H. Khan, B.A. Loothar, I.H. Bukhari, Effect of derivatization of sulfamethoxazole and trimethoprim with copper and zinc on their medicinal value. Med. Chem. Res. 18, 31–42 (2009)

    CAS  Article  Google Scholar 

  11. 11.

    F.A. Saad, J.H. Al-Fahemi, H. El-Ghamry, A.M. Khedr, M.G. Elghalban, N.M. El-Metwaly, Elaborated spectral, modeling, QSAR, docking, thermal, antimicrobial and anticancer activity studies for new nanosized metal ion complexes derived from sulfamerazineazo dye. J. Ther. Anal.Calori. 131, 1249–1267 (2018)

    CAS  Article  Google Scholar 

  12. 12.

    P. Rani, K.V. Srivastava, A. Kumar, Synthesis and antiinflammatory activity of heterocyclic indole derivatives. Eur. J. Med. Chem. 39, 449–452 (2004)

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    M. Azam, S.I. Al-Resayes, S.M. Wabaidur, M. Altaf, B. Chaurasia, M. Alam, S.N. Shukla, P. Gaur, N.T.M. Albaqami, M.S. Islam, S. Park, Synthesis, structural characterization and antimicrobial activity of Cu(II) and Fe(III) complexes incorporating azo-azomethine ligand. Molecules 23, 1–13 (2018)

    Article  CAS  Google Scholar 

  14. 14.

    M. Tonelli, I. Vazzana, B. Tasso, V. Boido, F. Sparatore, M. Fermeglia, S.M. Paneni, P. Posocco, S. Pricl, P. Colla, C. Ibba, B. Secci, G. Collu, R. Loddo, Antiviral and cytotoxic activities of aminoarylazo compounds and aryltriazene derivatives. Bioorg. Med. Chem. 17, 4425–4440 (2009)

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    K.K. Upadhyay, S. Upadhyay, A. Kumar, K. Thapliyal, Synthesis, crystal structures and studies on Hg2+ sensing by the diazo derivatives of sulfathiazole and Sulfamethoxazole. J. Sulfur Chem. 33, 573–582 (2012)

    CAS  Article  Google Scholar 

  16. 16.

    G.G. Mohamed, M.A.M. Gad-Elkareem, Synthesis, characterization and thermal studies on metal complexes of new azo compounds derived from sulfa drugs. Spectrochim. Acta A 68, 1382–1387 (2007)

    Article  CAS  Google Scholar 

  17. 17.

    H. Cetisli, M. Karakus, E. Erdem, H. Deligoez, Synthesis, metal complexation and spectroscopic characterization of three new azo compounds. J. Incl. Phen. Macrocycl. Chem. 42, 187–191 (2002)

    CAS  Article  Google Scholar 

  18. 18.

    M.A. Ibrahim, Heterocyclo-substituted sulfa drugs: Part XI. Novel biologically active N-(piperidino-, morpholino-, piperazino-) dithiocarbamyl-azo dyes and their chelates. Phosphorus Sulfur Silicon Relat. Elem. 163, 219–251 (2000)

    Google Scholar 

  19. 19.

    F.A. Saad, A.M. Khedr, Greener solid state synthesis of nano-sized mono and homo bi-nuclear Ni(II), Co(II) Mn(II), Hg(II), Cd(II) and Zn(II) complexes with new sulfa ligand as a potential antitumour and antimicrobial agents. J. Mol. Liq. 231, 572–579 (2017)

    CAS  Article  Google Scholar 

  20. 20.

    H. Li, G.-H. Lee, S.-M. Peng, The first one-dimensional coordination polymer containing O–H⋯F–Ni hydrogen bonding: crystal structure of [Ni3(dpa)4F2][Ni3(dpa)4(H2O)2](BF4)2·2CH3OH. Inorg. Chem. Commun. 6, 1–4 (2003)

    Article  Google Scholar 

  21. 21.

    R.M. Issa, A.M. Khedr, A. Tawfik, Binuclear mixed metal complexes of V(IV), Mo(III), and U(VI) o-cresolphthalein complexonates with other metal ions. Synth. React. Inorg. Met.-Org. Chem. 34, 1087–1104 (2004)

    CAS  Article  Google Scholar 

  22. 22.

    P. Nordell, P. Lincoln, Mechanism of DNA threading intercalation of binuclear Ru complexes: uni- or bimolecular pathways depending on ligand structure and binding density. J. Am. Chem. Soc. 127, 9670–9671 (2005)

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    A.M. Pyle, J.P. Rehmann, R. Meshoyrer, C.V. Kumar, N.J. Turro, J.K. Barton, Mixed-ligand complexes of ruthenium(II): factors governing binding to DNA. J. Am. Chem. Soc. 111, 3051–3058 (1989)

    CAS  Article  Google Scholar 

  24. 24.

    B. Macías, M.V. Villa, R. Lapresa, G. Alzuet, J. Hernández-Gil, F. Sanz, Mn(II) complexes with sulfonamides as ligands: DNA interaction studies and nuclease activity. J. Inorg. Biochem. 115, 64–71 (2012)

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    T. Mosmann, Rapid colorimetric assay for cellular growth and survival: application to proliferation and antitumor activity assays. J. Immunol. Methods 65, 55–63 (1983)

    CAS  Article  Google Scholar 

  26. 26.

    S.M. Gomha, S.M. Riyadh, E.A. Mahmmoud, M.M. Elaasser, Synthesis and anticancer activity of arylazothiazoles and 1,3,4-thiadiazoles using chitosan-grafted-poly(4-vinylpyridine) as a novel copolymer basic catalyst. Chem. Heterocycl. Comp. 51, 1030–1038 (2015)

    CAS  Article  Google Scholar 

  27. 27.

    A.C. Scott, Laboratory Control of Antimicrobial therapy. In: J.G et al. eds. Practical Medical Microbiology, 13th edn. (Churchill Livingestone, Edinburgh, 1981)

    Google Scholar 

  28. 28.

    M. Gaber, N.A. El-Wakiel, H. El-Ghamry, S.K. Fathalla, Synthesis, spectroscopic characterization, DNA interaction and biological activities of Mn(II), Co(II), Ni(II) and Cu(II) complexes with [(1H-1,2,4-triazole-3-ylimino)methyl]naphthalene-2-ol. J. Mol. Struct. 1076, 251–261 (2014)

    CAS  Article  Google Scholar 

  29. 29.

    W.J. Geary, The use of conductivity measurements in organic solvents for the characterisation of coordination compounds. Coord. Chem. Rev. 7, 81–122 (1971)

    CAS  Article  Google Scholar 

  30. 30.

    K. Nakamoto, Infrared spectra of Inorganic and Coordination Compounds (Wiley, New York, 1986)

    Google Scholar 

  31. 31.

    K.Y. El-Baredie, Preparation and characterization of sulfadiazine schiff base complexes of Co(II), Ni(II), Cu(II), and Mn(II). Monatsh. Chem. 136, 1139–1155 (2005)

    Article  CAS  Google Scholar 

  32. 32.

    K. El-Baradie, R. El-Sharkawy, H. El-Ghamry, K. Sakai, Synthesis and characterization of Cu(II), Co(II) and Ni(II) complexes of a number of sulfa drug azo dyes and their application for wastewater treatment. Spectrochim. Acta A 121, 180–187 (2014)

    CAS  Article  Google Scholar 

  33. 33.

    G.Q. Zhong, J. Shen, Q.Y. Jiang, Y.Q. Jia, M.J. Chen, Z.P. Zhang, Synthesis, characterization and thermal decomposition of SbIII-M-SbIII type trinuclear complexes of ethylenediamine-N, N, N′, N′-tetraacetate (M: Co(II), La(III), Nd(III), Dy(III)).J. Therm. Anal. Calorim. 92, 607–616 (2008)

    CAS  Article  Google Scholar 

  34. 34.

    J.R. Allan, W.C. Geddes, C.S. Hindle, A.E. Orr, Thermal analysis studies on pyridine carboxylic acid complexes of zinc(II). Thermochim. Acta C 153, 249–256 (1989)

    CAS  Article  Google Scholar 

  35. 35.

    M. Badea, A. Emandi, D. Marinescu, E. Cristurean, R. Olar, A. Braileanu, P. Budrugeac, E. Segal, Thermal stability of some azo-derivatives and their complexes. J. Therm. Anal. Calorim. 72, 525–531 (2033)

    Article  Google Scholar 

  36. 36.

    S. Gupta, S. Pal, A.K. Barik, A. Hazra, S. Roy, T.N. Mandal, S.-M. Peng, G.-H. Lee, M.Salah El Fallah, J. Tercero, S.K. Kar, Synthesis, characterization and magnetostructural correlation studies on three binuclear copper complexes of pyrimidine derived Schiff base ligands. Polyhedron 27, 2519–2528 (2008)

    CAS  Article  Google Scholar 

  37. 37.

    P.N. Patel, D.J. Patel, H.S. Patel, Synthesis, spectroscopic, thermal and biological aspects of drug-based copper(II) complexes. Appl. Organomet. Chem. 25, 454–463 (2011)

    CAS  Article  Google Scholar 

  38. 38.

    A.A. Osowole, E.J. Akpan, Synthesis, spectroscopic characterisation, in-vitro anticancer and antimicrobial activities of some metal(ii) complexes of 3-{4, 6-dimethoxy pyrimidinyl) iminomethyl naphthalen-2-ol. Eur. J. Appl. Sci. 4, 14–20 (2012)

    CAS  Google Scholar 

  39. 39.

    M.M. Al-Ne’aimi, M.M. Al-Khuder, Synthesis, characterization and extraction studies of some metal (II) complexes containing (hydrazoneoxime and bis-acylhydrazone) moieties. Spectrochim. Acta A 105, 365–373 (2013)

    Article  CAS  Google Scholar 

  40. 40.

    D.X. West, A. Nassar, F.A. El-Saied, M.I. Ayad, Nickel(II) complexes of 2-aminoacetophenone N(4)-substituted thiosemicarbazones. Transit. Met. Chem. 23, 423–427 (1998)

    CAS  Article  Google Scholar 

  41. 41.

    W. Al Zoubi, A.A.S. Al-Hamdani, S.D. Ahmed, Y.G. Ko, Synthesis, characterization, and biological activity of Schiff bases metal complexes. J. Phys. Org. Chem. 31, 3752–3759 (2018)

    Article  CAS  Google Scholar 

  42. 42.

    D.N. Kumar, B.S. Garg, Synthesis and spectroscopic studies of complexes of zinc(II) with N2O2 donor groups. Spectrochim. Acta A 64, 141–147 (2006)

    Article  CAS  Google Scholar 

  43. 43.

    T.M.A. Ismail, Mononuclear and binuclear Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) complexes of schiff-base ligands derived from 7-formyl-8-hydroxyquinoline and diaminonaphthalenes. J. Coord. Chem. 58, 141–151 (2005)

    CAS  Article  Google Scholar 

  44. 44.

    A.A. Fahem, Comparative studies of mononuclear Ni(II) and UO2(II) complexes having bifunctional coordinated groups: synthesis, thermal analysis, X-ray diffraction, surface morphology studies and biological evaluation. Spectrochim. Acta A 88, 10–22 (2012)

    CAS  Article  Google Scholar 

  45. 45.

    J.S. Ritch, T. Chivers, K. Ahmad, M. Afzaal, P. O’Brien, Synthesis, structures, and multinuclear NMR spectra of tin(II) and lead(II) complexes of tellurium-containing imidodiphosphinate ligands: preparation of two morphologies of phase-pure PbTe from a single-source precursor. Inorg. Chem. 49, 1198–1205 (2010)

    CAS  PubMed  Article  Google Scholar 

  46. 46.

    F.A. Saad, M.G. Elghalban, N. El-Metwaly, H. El-Ghamry, A.M. Khedr, Density functional theory/B3LYP study of nanometric 4-(2,4-dihydroxy-5-formylphen-1-ylazo)-N-(4-methylpyrimidin-2-yl)benzenesulfonamide complexes: quantitative structure–activity relationship, docking, spectral and biological investigations. Appl. Organomet. Chem. 31, 3721–3735 (2017)

    Article  CAS  Google Scholar 

  47. 47.

    J.K. Hui, M.J. MacLachlan, Metal-containing nanofibers via coordination chemistry. Coord. Chem. Rev. 254, 2363–2390 (2010)

    CAS  Article  Google Scholar 

  48. 48.

    A. Salimi, J.R. Halla, S. Soltanian, Immobilization of hemoglobin on electrodeposited cobalt-oxide nanoparticles: direct voltammetry and electrocatalytic activity. Biophys. Chem. 130, 122–131 (2007)

    CAS  PubMed  Article  Google Scholar 

  49. 49.

    A.S. Sultan, H. Brim, Z.A. Sherif, Co-over expression of Janus kinase 2 and signal transducer and activator of transcription 5a promotes differentiation of mammary cancer cells through reversal of epithelial–mesenchymal transition. Cancer Sci. 2, 272–279 (2008)

    Article  CAS  Google Scholar 

  50. 50.

    S.H. Etaiw, S.A. Amer, M.M. El-Bendary, A Mixed valence copper cyanide 3D-supramolecular coordination polymer containing 1,10-phenathorline ligand as a potential antitumor agent, effective catalyst and luminescent material. J. Inorg. Organomet. Polym Mater. 21, 662–669 (2011)

    CAS  Article  Google Scholar 

  51. 51.

    A.F. Shoair, A.A. El-Bindary, N.A. El-Ghamaz, G.N. Rezk, Synthesis, characterization, DNA binding and antitumor activities of Cu(II) complexes. J. Mol. Liq. 269, 619–638 (2018)

    CAS  Article  Google Scholar 

  52. 52.

    E.A. Bakr, G.B. Al-Hefnawy, M.K. Awad, H.H. Abd-Elatty, M.S. Youssef, New Ni (II), Pd (II) and Pt (II) complexes coordinated to azo pyrazolone ligand with a potent anti-tumor activity: synthesis, characterization, DFT and DNA cleavage studies. Appl. Organomet. Chem. 32, e4104 (2018)

    Article  CAS  Google Scholar 

  53. 53.

    X. Riera, V. Moreno, C.J. Ciudad, V. Noe, M. Font-Bardía, X. Solans, Complexes of Pd(II) and Pt(II) with 9-aminoacridine: reactions with DNA and study of their antiproliferative activity. Bioinorg. Chem. Appl. 2007, 1–15 (2007)

  54. 54.

    M. Gaber, A.M. Khedr, M. Elsharkawy, Characterization and thermal studies of nano-synthesized Mn(II), Co(II), Ni(II) and Cu(II) complexes with adipohydrazone ligand as new promising antimicrobial and antitumor agents. Appl. Organomet. Chem. 31, 3885–3898 (2017)

    Article  CAS  Google Scholar 

  55. 55.

    W.H. Mahmoud, F.N. Sayed, G.G. Mohamed, Azo dye with nitrogen donor sets of atoms and its metal complexes: synthesis, characterization, DFT, biological, anticancer and Molecular docking studies. Appl. Organomet. Chem. 32, e4347 (2018)

    Article  CAS  Google Scholar 

  56. 56.

    A. Kulkarni, S.A. Patil, P.S. Badami, Synthesis, characterization, DNA cleavage and in vitro antimicrobial studies of La(III), Th(IV) and VO(IV) complexes with Schiff bases of coumarin derivatives. Eur. J. Med. Chem. 44, 2904–2912 (2009)

    CAS  PubMed  Article  Google Scholar 

  57. 57.

    K.N. Thimmaiah, W.D. Lloyd, G.T. Chandrappa, Stereochemistry and fungi toxicity of complexes of p-anisaldehydethiosemicarbazone with Mn(II), Fe(II), Co(II) and Ni(II). Inorg. Chim. Acta 106, 81–83 (1985)

    CAS  Article  Google Scholar 

  58. 58.

    M.A. Phanib, S.D. Dhumwad, Synthesis, characterization and biological studies of CoII, NiII, CuII and ZnII complexes of Schiff bases derived from 4-substituted carbostyrils[quinolin2(1H)-ones]. Trans. Met. Chem. 32, 1117–1125 (2007)

    Article  CAS  Google Scholar 

  59. 59.

    M.I. Abou-Dobara, A.Z. El-Sonbati, M.A. Diab, A.A. El-Bindary, S.M. Morgan, Thermal properties, antimicrobial activity of azo complexes and ultrastructure study of some affected bacteria. J. Microbial. Biochem. Technol. S3, 1–13 (2014)

    Google Scholar 

  60. 60.

    T. Hirohama, Y. Kuranuki, E. Ebina, T. Sugizaki, H. Arii, M. Chikira, P.T. Selvi, M. Palaniandavar, Copper(II) complexes of 1,10-phenanthroline-derived ligands: studies on DNA binding properties and nuclease activity. J. Inorg. Biochem. 99, 1205–1219 (2005)

    CAS  PubMed  Article  Google Scholar 

  61. 61.

    T.R. Li, Z.Y. Yang, B.D. Wang, D.D. Qin, Synthesis, characterization, antioxidant activity and DNA-binding studies of two rare earth(III) complexes with naringenin-2-hydroxy benzoyl hydrazone ligand. Eur. J. Med. Chem. 43, 1688–1695 (2008)

    PubMed  Article  CAS  Google Scholar 

  62. 62.

    N. Chitrapriya, V. Mahalingam, M. Zeller, K. Natarajan, Synthesis, characterization, crystal structures and DNA binding studies of nickel(II) hydrazone complexes. Inorg. Chim. Acta 363, 3685–3693 (2010)

    CAS  Article  Google Scholar 

  63. 63.

    F.H. Li, G.H. Zhao, H.X. Wu, H. Lin, X.X. Wu, S.R. Zhu, H.K. Lin, Synthesis, characterization and biological activity of lanthanum(III) complexes containing 2-methylene-1,10-phenanthroline units bridged by aliphatic diamines. J. Inorg. Biochem. 100, 36–43 (2006)

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

This paper contains the results and findings of a research project that is funded by King Abdulaziz City for Science and Technology (KACST) Grant No. 37–175.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hoda A. El-Ghamry.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 311 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Saad, F.A., El-Ghamry, H.A., Kassem, M.A. et al. Nano-synthesis, Biological Efficiency and DNA Binding Affinity of New Homo-binuclear Metal Complexes with Sulfa Azo Dye Based Ligand for Further Pharmaceutical Applications. J Inorg Organomet Polym 29, 1337–1348 (2019). https://doi.org/10.1007/s10904-019-01098-z

Download citation

Keywords

  • Nano-meter complexes
  • Sulfathiazole
  • Characterization
  • Anticancer
  • DNA binding