Skip to main content

Advertisement

Log in

Highly Retained Electric and Mechanical Traits in Micron-Sized Glass Fibers Filled Epoxy Composite Based on Heat-Oxygen Ageing

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The epoxy based composite materials with a high ageing resistance property have attracted a wide attention in the field of high-electric-insulation electronic packaging. However, both of the highly retained electrical and mechanical performances are difficult to simultaneously achieve in composite materials once a longer heat-oxygen ageing at a high temperature is applied onto the materials. In order to realize the ageing-resistant high mechanical, electric breakdown and dielectric properties simultaneously in composite, in this work, an epoxy based composite filled with the high-insulation micron-sized glass fiber filler has been prepared, and its shock resistance strength, electric breakdown strength, dielectric constant, dielectric loss and conductivity after a severe heat-oxygen ageing have been investigated in detail, compared with that before the ageing. Although the ageing was operated at 150 °C for 25 days, the electric and mechanical properties of the composite were still finely retained, including 60% retention for shock resistance strength, 70% for breakdown strength, 80% for dielectric constant, dielectric loss below 0.1 and conductivity below 2 × 10−9 S cm−1. The epoxy matrix and glass fiber filler were responsible for the small decline and high retention for the properties in composite, respectively. This work might open the way for the large-scale preparation of the promising epoxy based composites with the highly retained ageing-resistant electric and mechanical properties based on incorporating the high-insulation fiber fillers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. I. Chang, J. Bae, J. Park, S. Lee, M. Ban, T. Park, Y. Lee, H. Song, Y. Kim, S. Cha, Energy 104, 107 (2016)

    Article  CAS  Google Scholar 

  2. H. Ding, C. Xia, J. Wang, C. Wang, F. Chu, J. Mater. Sci. 51, 5008 (2016)

    Article  CAS  Google Scholar 

  3. P. Maiolino, R. Woolley, D. Branson, P. Benardos, A. Popov, S. Ratchev, Robot. Comput. Integr. Manuf. 48, 188 (2017)

    Article  Google Scholar 

  4. L. Soares, I. Cesar, C. Santos, A. De Cardoso, P. Liporoni, E. Munin, A. Martin, Am. J. Dent. 20, 299 (2007)

    PubMed  Google Scholar 

  5. B. Van, P. Campbell, A. Honeyman, R. Spears, P. Buschang, Angle Orthod. 81, 134 (2011)

    Article  Google Scholar 

  6. L. Yu, M. Shen, X. Ding, Y. Quan, Q. Chen, J. Appl. Polym. Sci. 115, 1718 (2010)

    Article  CAS  Google Scholar 

  7. A. Haris, T. Adachi, W. Araki, J. Mater. Sci. 43, 3289 (2008)

    Article  CAS  Google Scholar 

  8. J. Ampudia, E. Larrauri, E. Gil, M. Rodríguez, L. León, J. Appl. Polym. Sci. 71, 1239 (2015)

    Article  Google Scholar 

  9. J. Cao, J. Hu, H. Fan, J. Wan, B. Li, Thermochim. Acta 593, 30 (2014)

    Article  CAS  Google Scholar 

  10. A. Singh, B. Panda, S. Mohanty, S. Nayak, M. Gupta, Korean J. Chem. Eng. 34, 3028 (2017)

    Article  CAS  Google Scholar 

  11. P. Cortés, S. Montserrat, J. Hutchinson, J. Appl. Polym. Sci. 63, 17 (2015)

    Article  Google Scholar 

  12. M. Akatsuka, Y. Takezawa, S. Amagi, Polymer 42, 3003 (2001)

    Article  CAS  Google Scholar 

  13. N. Kouloumbi, L. Ghivalos, P. Pantazopoulou, Pigm. Resin Technol. 34, 148 (2005)

    Article  CAS  Google Scholar 

  14. M. Sangerano, E. Pallaro, I. Roppolo, G. Rizza, J. Mater. Sci. 44, 3165 (2009)

    Article  CAS  Google Scholar 

  15. R. Polanský, V. Mentlík, P. Prosr, J. Sušír, Polym. Test. 28, 428 (2009)

    Article  CAS  Google Scholar 

  16. S. Ding, D. Liu, L. Duan, Polym. Degrad. Stab. 91, 1010 (2006)

    Article  CAS  Google Scholar 

  17. W. Fan, J. Li, Polym. Compos. 35, 975 (2014)

    Article  CAS  Google Scholar 

  18. K. Yamani, R. Berenguer, A. Benyoucef, E. Morallón, J. Therm. Anal. Calorim. (2018) https://doi.org/10.1007/s10973-018-7347-z

    Article  Google Scholar 

  19. S. Daikh, F. Zeggai, A. Bellil, A. Benyoucef, J. Phys. Chem. Solids 121, 78 (2018)

    Article  CAS  Google Scholar 

  20. S. Benyakhou, A. Belmokhtar, A. Zehhaf, A. Benyoucef, J. Mol. Struct. 1150, 580 (2017)

    Article  CAS  Google Scholar 

  21. S. Benykhlef, A. Bekhoukh, R. Berenguer, A. Benyoucef, E. Morallon, Colloid Polym. Sci. 294, 1877 (2016)

    Article  CAS  Google Scholar 

  22. F. Chouli, I. Radja, E. Morallon, A. Benyoucef, Polym. Compos. 38, E254 (2017)

    Article  CAS  Google Scholar 

  23. J. Adiletta, J. Acoust. Soc. Am. 83, 404 (1988)

    Article  Google Scholar 

  24. S. Chen, Q. Wang, T. Wang, Mater. Des. 38, 47 (2012)

    Article  CAS  Google Scholar 

  25. M. Bassi, R. Bedini, R. Pecci, P. Ioppolo, D. Laritano, F. Carinci, Int. J. Prosthodont. 29, 77 (2016)

    Article  PubMed  Google Scholar 

  26. Y. Wang, Y. Zhu, X. Fu, Y. Fu, Text. Res. J. 85, 980 (2015)

    Article  CAS  Google Scholar 

  27. P. Eriksson, P. Boydell, K. Eriksson, J. Månson, A. Albertsson, J. Appl. Polym. Sci. 65, 1619 (2015)

    Article  Google Scholar 

  28. T. Charoensuk, U. Boonyang, C. Sirisathitkul, P. Panchawirat, P. Senthongkaew, Mater. Sci. 20, 97 (2014)

    Google Scholar 

  29. J. Souček, P. Trnka, J. Hornak, Energies 10, 1120 (2017)

    Article  Google Scholar 

  30. X. Buch, M. Shanahan, J. Appl. Polym. Sci. 76, 987 (2015)

    Article  Google Scholar 

  31. F. Mao, C. Dong, S. Sharifi-Asl, P. Lu, D. Macdonald, Electrochim. Acta 144, 391 (2014)

    Article  CAS  Google Scholar 

  32. W. Peng, X. Huang, J. Yu, P. Jiang, W. Liu, Compos. A 41, 1201 (2010)

    Article  CAS  Google Scholar 

  33. J. Lu, S. Schmidt, D. Boesch, N. Pervez, R. York, S. Stemmer, Appl. Phys. Lett. 88, L1211 (2006)

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Talent Introduction Scientific Research Initiation Projects of Yangtze Normal University (Grant Nos. 2017KYQD33 and 2017KYQD34) and the National Natural Science Foundation of China (Grant No. 51502309).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Peng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Y., Deng, Q., Hu, J. et al. Highly Retained Electric and Mechanical Traits in Micron-Sized Glass Fibers Filled Epoxy Composite Based on Heat-Oxygen Ageing. J Inorg Organomet Polym 29, 66–71 (2019). https://doi.org/10.1007/s10904-018-0965-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-018-0965-x

Keywords

Navigation