Skip to main content
Log in

Enhanced Photocatalytic Performance of Al-Doped ZnO NPs-Reduced Graphene Oxide Nanocomposite for Removing of Methyl Orange Dye from Water Under Visible-Light Irradiation

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

In this work, a series of Al-doped ZnO nanoparticles-reduced graphene oxide (AZO–RGO) nanocomposites were successfully synthesized by loading AZO nanoparticles (AZO NPs) on the graphene oxide sheets via in situ and low temperature solvothermal method. Several techniques were utilized to characterize the resultant nanocomposites including scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), atomic force microscopy, X-ray photoelectron spectroscopy (XPS), and FT-Infra Red (FT-IR) analyses. SEM and TEM studies showed that AZO NPs have been formed on RGO surface, confirming the formation of AZO–RGO nanocomposites. XPS, FT-IR, and XRD analyses revealed that the oxygen-containing functional groups can prepare as anchoring sites for capturing AZO NPs on RGO surface. Moreover, it was observed that these nanoparticles have wurtzite structure. The photo-catalysis results showed that the 5% AZO–RGO nanocomposite has a higher efficiency than that of pure ZnO and ZnO–RGO samples for removing methyl orange dye from water under visible light irradiation. The enhancement in the photocatalytic activity can be attributed to the increase of surface area of AZO–RGO nanocomposites in comparison with pure ZnO. Furthermore, the existing of Al dopants and RGO sheets in the prepared samples can effectively decrease the charge recombination process in the AZO–RGO nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 1

Similar content being viewed by others

References

  1. M. Ahmad, E. Ahmed, Y. Zhang, N.R. Khalid, J. Xu, M. Ullah, Z. Hong, Preparation of highly efficient Al-doped ZnO photocatalyst by combustion synthesis. Curr. Appl. Phys. 13, 697–704 (2013). https://doi.org/10.1016/j.cap.2012.11.008

    Article  Google Scholar 

  2. O. Akhavan, R. Azimirad, S. Safa, Functionalized carbon nanotubes in ZnO thin films for photoinactivation of bacteria. Mater. Chem. Phys. 130, 598–602 (2011). https://doi.org/10.1016/j.matchemphys.2011.07.030

    Article  CAS  Google Scholar 

  3. S.S. Alias, A.B. Ismail, A.A. Mohamad, Effect of pH on ZnO nanoparticle properties synthesized by sol–gel centrifugation. J. Alloy. Compd. 499, 231–237 (2010). https://doi.org/10.1016/j.jallcom.2010.03.174

    Article  CAS  Google Scholar 

  4. F.A. Alshamsi, A.S. Albadwawi, M.M. Alnuaimi, M.A. Rauf, S.S. Ashraf, Comparative efficiencies of the degradation of Crystal Violet using UV/hydrogen peroxide and Fenton’s reagent. Dyes Pigm. 74, 283–287 (2007). https://doi.org/10.1016/j.dyepig.2006.02.016

    Article  CAS  Google Scholar 

  5. S. Ameen, H.-K. Seo, M. Shaheer Akhtar, H.S. Shin, Novel graphene/polyaniline nanocomposites and its photocatalytic activity toward the degradation of rose Bengal dye. Chem. Eng. J. 210, 220–228 (2012). https://doi.org/10.1016/j.cej.2012.08.035

    Article  CAS  Google Scholar 

  6. S. Ameen, M.S. Akhtar, H.-K. Seo, H.S. Shin, Advanced ZnO–graphene oxide nanohybrid and its photocatalytic. Appl. Mater. Lett. 100, 261–265 (2013). https://doi.org/10.1016/j.matlet.2013.03.012

    Article  CAS  Google Scholar 

  7. R. Beura, P. Thangadurai, Structural, optical and photocatalytic properties of graphene-ZnO nanocomposites for varied compositions. J. Phys. Chem. Solids 102, 168–177 (2017). https://doi.org/10.1016/j.jpcs.2016.11.024

    Article  CAS  Google Scholar 

  8. I.Y.Y. Bu, Highly conductive and transparent reduced graphene oxide/aluminium doped zinc oxide nanocomposite for the next generation solar cell. Appl. Opt. Mater. 36, 299–303 (2013). https://doi.org/10.1016/j.optmat.2013.09.012

    Article  CAS  Google Scholar 

  9. Y. Bu, Z. Chen, W. Li, B. Hou, Highly efficient photocatalytic performance of graphene–ZnO quasi-shell–core composite material. ACS Appl. Mater. Interfaces 5, 12361–12368 (2013). https://doi.org/10.1021/am403149g

    Article  CAS  PubMed  Google Scholar 

  10. D. Chen et al., Graphene-wrapped ZnO nanospheres as a photocatalyst for high performance photocatalysis. Thin Solid Films 574, 1–9 (2015). https://doi.org/10.1016/j.tsf.2014.11.051

    Article  CAS  Google Scholar 

  11. A.B. Djurisic, Y.H. Leung, A.M.C. Ng, Strategies for improving the efficiency of semiconductor metal oxide photocatalysis. Mater. Horiz. 1, 400–410 (2014). https://doi.org/10.1039/C4MH00031E

    Article  CAS  Google Scholar 

  12. S. Gayathri, P. Jayabal, M. Kottaisamy, V. Ramakrishnan, Synthesis of ZnO decorated graphene nanocomposite for enhanced photocatalytic properties. J. Appl. Phys. 115, 173504 (2014). https://doi.org/10.1063/1.4874877

    Article  CAS  Google Scholar 

  13. R. Georgekutty, M.K. Seery, S.C. Pillai, A highly efficient Ag-ZnO photocatalyst: synthesis, properties, and mechanism. J. Phys. Chem. C 112, 13563–13570 (2008). https://doi.org/10.1021/jp802729a

    Article  CAS  Google Scholar 

  14. O. Gezici, M. Küçükosmanoğlu, A. Ayar, The adsorption behavior of crystal violet in functionalized sporopollenin-mediated column arrangements. J. Colloid Interface Sci. 304, 307–316 (2006). https://doi.org/10.1016/j.jcis.2006.09.048

    Article  CAS  PubMed  Google Scholar 

  15. Y. Gong, T. Andelman, G. Neumark, S. O’Brien, I. Kuskovsky, Origin of defect-related green emission from ZnO nanoparticles: effect of surface modification. Nanoscale Res. Lett. 2, 297–302 (2007)

    Article  CAS  Google Scholar 

  16. G. Gu, J. Cheng, X. Li, W. Ni, Q. Guan, G. Qu, B. Wang, Facile synthesis of graphene supported ultralong TiO2 nanofibers from the commercial titania for high performance lithium-ion batteries. J. Mater. Chem. A 3, 6642–6648 (2015). https://doi.org/10.1039/C5TA00523J

    Article  CAS  Google Scholar 

  17. H.-L. Guo, P. Su, X. Kang, S.-K. Ning, Synthesis and characterization of nitrogen-doped graphene hydrogels by hydrothermal route with urea as reducing-doping agents. J. Mater. Chem. A 1, 2248–2255 (2013). https://doi.org/10.1039/C2TA00887D

    Article  CAS  Google Scholar 

  18. J. He, C. Niu, C. Yang, J. Wang, X. Su, Reduced graphene oxide anchored with zinc oxide nanoparticles with enhanced photocatalytic activity and gas sensing properties. RSC Adv. 4, 60253–60259 (2014). https://doi.org/10.1039/C4RA12707B

    Article  CAS  Google Scholar 

  19. N. Herring, S. Almahoudi, C. Olson, M.S. El-Shall, Enhanced photocatalytic activity of ZnO–graphene nanocomposites prepared by microwave synthesis. J. Nanopart. Res. 14, 1–13 (2012). https://doi.org/10.1007/s11051-012-1277-7

    Article  CAS  Google Scholar 

  20. L. Hu, X. Hu, X. Wu, C. Du, Y. Dai, J. Deng, Density functional calculation of transition metal adatom adsorption on graphene. Physica B 405, 3337–3341 (2010). https://doi.org/10.1016/j.physb.2010.05.001

    Article  CAS  Google Scholar 

  21. W.S. Hummers, R.E. Offeman, Preparation of graphitic oxide. Am. Chem. Soc. 80, 1339–1339 (1958). https://doi.org/10.1021/ja01539a017

    Article  CAS  Google Scholar 

  22. M. Isik, N.M. Gasanly, Thermoluminescence properties of Al doped ZnO nanoparticles. Ceram. Int. 44, 13929–13933 (2018). https://doi.org/10.1016/j.ceramint.2018.04.241

    Article  CAS  Google Scholar 

  23. P. Jantawasu, T. Sreethawong, S. Chavadej, Photocatalytic activity of nanocrystalline mesoporous-assembled TiO2 photocatalyst for degradation of methyl orange monoazo dye in aqueous wastewater. Chem. Eng. J. 155, 223–233 (2009). https://doi.org/10.1016/j.cej.2009.07.036

    Article  CAS  Google Scholar 

  24. S.H. Jeong, S. Kho, D. Jung, S.B. Lee, J.H. Boo, Deposition of aluminum-doped zinc oxide films by RF magnetron sputtering and study of their surface characteristics. Surf. Coat. Technol. 174–175, 187–192 (2003). https://doi.org/10.1016/S0257-8972(03)00600-5

    Article  CAS  Google Scholar 

  25. S.A. Khayatian, A. Kompany, N. Shahtahmassebi, A.K. Zak, Preparation and characterization of Al doped ZnO NPs/graphene nanocomposites synthesized by a facile one-step solvothermal method. Ceram. Int. 42, 110–115 (2016). https://doi.org/10.1016/j.ceramint.2015.08.008

    Article  CAS  Google Scholar 

  26. Y.C. Ko, H.Y. Fang, D.H. Chen, Fabrication of Ag/ZnO/reduced graphene oxide nanocomposite for SERS detection and multiway killing of bacteria. J. Alloy. Compd. 695, 1145–1153 (2017). https://doi.org/10.1016/j.jallcom.2016.10.241

    Article  CAS  Google Scholar 

  27. H.J. Lee, J.H. Kim, S.S. Park, S.S. Hong, G.D. Lee, Degradation kinetics for photocatalytic reaction of methyl orange over Al-doped ZnO nanoparticles. J. Ind. Eng. Chem. 25, 199–206 (2015). https://doi.org/10.1016/j.jiec.2014.10.035

    Article  CAS  Google Scholar 

  28. X. Li, Q. Wang, Y. Zhao, W. Wu, J. Chen, H. Meng, Green synthesis and photo-catalytic performances for ZnO-reduced graphene oxide nanocomposites. J. Colloid Interface Sci. 411, 69–75 (2013). https://doi.org/10.1016/j.jcis.2013.08.050

    Article  CAS  PubMed  Google Scholar 

  29. P. Liu, Y. Huang, L. Wang, A facile synthesis of reduced graphene oxide with Zn powder under acidic condition. Mater. Lett. 91, 125–128 (2013). https://doi.org/10.1016/j.matlet.2012.09.085

    Article  CAS  Google Scholar 

  30. S. Liu, H. Sun, S. Liu, S. Wang, Graphene facilitated visible light photodegradation of methylene blue over titanium dioxide photocatalysts. Chem. Eng. J. 214, 298–303 (2013). https://doi.org/10.1016/j.cej.2012.10.058

    Article  CAS  Google Scholar 

  31. X. Liu, J. Zhang, L. Wang, T. Yang, X. Guo, S. Wu, S. Wang, 3D hierarchically porous ZnO structures and their functionalization by Au nanoparticles for gas sensors. J. Mater. Chem. 21, 349–356 (2011). https://doi.org/10.1039/C0JM01800G

    Article  Google Scholar 

  32. X. Liu et al., UV-assisted photocatalytic synthesis of ZnO–reduced graphene oxide composites with enhanced photocatalytic activity in reduction of Cr(VI). Chem. Eng. J. 183, 238–243 (2012). https://doi.org/10.1016/j.cej.2011.12.068

    Article  CAS  Google Scholar 

  33. M. Louhichi, S. Romdhane, A. Fkiri, L.S. Smiri, H. Bouchriha, Structural and photoluminescence properties of Al-doped zinc oxide nanoparticles synthesized in polyol. Appl. Surf. Sci. 356, 998–1004 (2015). https://doi.org/10.1016/j.apsusc.2015.08.202

    Article  CAS  Google Scholar 

  34. Q.-P. Luo, X.-Y. Yu, B.-X. Lei, H.-Y. Chen, D.-B. Kuang, C.-Y. Su, Reduced graphene oxide-hierarchical ZnO hollow sphere composites with enhanced photocurrent and photocatalytic activity. J. Phys. Chem. C 116, 8111–8117 (2012). https://doi.org/10.1021/jp2113329

    Article  CAS  Google Scholar 

  35. R. Lv et al., Facile synthesis of ZnO nanorods grown on graphene sheets and its enhanced photocatalytic efficiency. J. Chem. Technol. Biotechnol. 90, 550–558 (2015). https://doi.org/10.1002/jctb.4347

    Article  CAS  Google Scholar 

  36. N. Neves, A. Lagoa, J. Calado, A.M.B. do Rego, E. Fortunato, R. Martins, I. Ferreira, Al-doped ZnO nanostructured powders by emulsion detonation synthesis—Improving materials for high quality sputtering targets manufacturing. J. Eur. Ceram. Soc. 34, 2325–2338 (2014). https://doi.org/10.1016/j.jeurceramsoc.2014.02.019

    Article  CAS  Google Scholar 

  37. A.A. Ogwu, E. Bouquerel, O. Ademosu, S. Moh, E. Crossan, F. Placido, The influence of rf power and oxygen flow rate during deposition on the optical transmittance of copper oxide thin films prepared by reactive magnetron sputtering. J. Phys. D 38, 266 (2005)

    Article  CAS  Google Scholar 

  38. Y. Peng, J. Ji, D. Chen, Ultrasound assisted synthesis of ZnO/reduced graphene oxide composites with enhanced photocatalytic activity and anti-photocorrosion. Appl. Surf. Sci. 356, 762–768 (2015). https://doi.org/10.1016/j.apsusc.2015.08.070

    Article  CAS  Google Scholar 

  39. J. Qin, X. Zhang, C. Yang, M. Cao, M. Ma, R. Liu, ZnO microspheres-reduced graphene oxide nanocomposite for photocatalytic degradation of methylene blue dye. Appl. Surf. Sci. 392, 196–203 (2017). https://doi.org/10.1016/j.apsusc.2016.09.043

    Article  CAS  Google Scholar 

  40. L.S. Roselin, R. Selvin, Photocatalytic degradation of reactive orange 16 dye in a ZnO coated thin film flow photoreactor. Sci. Adv. Mater. 3, 251–258 (2011). https://doi.org/10.1166/sam.2011.1151

    Article  CAS  Google Scholar 

  41. P.P. Sahay, R.K. Nath, Al-doped ZnO thin films as methanol sensors. Sens. Actuators B 134, 654–659 (2008). https://doi.org/10.1016/j.snb.2008.06.006

    Article  CAS  Google Scholar 

  42. B. Saravanakumar, R. Mohan, S.-J. Kim, Facile synthesis of graphene/ZnO nanocomposites by low temperature hydrothermal method. Mater. Res. Bull. 48, 878–883 (2013). https://doi.org/10.1016/j.materresbull.2012.11.048

    Article  CAS  Google Scholar 

  43. J.-C. Sin, S.-M. Lam, K.-T. Lee, A.R. Mohamed, Preparation and photocatalytic properties of visible light-driven samarium-doped ZnO nanorods. Ceram. Int. 39, 5833–5843 (2013). https://doi.org/10.1016/j.ceramint.2013.01.004

    Article  CAS  Google Scholar 

  44. R.K. Singhal et al., Room temperature ferromagnetism in Mn-doped dilute ZnO semiconductor: An electronic structure study using X-ray photoemission. J. Alloy. Compd. 477, 379–385 (2009). https://doi.org/10.1016/j.jallcom.2008.10.005

    Article  CAS  Google Scholar 

  45. Y.M. Slokar, A.M. Le Marechal, Methods of decoloration of textile wastewaters. Dyes Pigm. 37, 335–356 (1998). https://doi.org/10.1016/S0143-7208(97)00075-2

    Article  CAS  Google Scholar 

  46. G. Srinet, R. Kumar, V. Sajal, Effects of aluminium doping on structural and photoluminescence properties of ZnO nanoparticles. Ceram. Int. 40, 4025–4031 (2014). https://doi.org/10.1016/j.ceramint.2013.08.055

    Article  CAS  Google Scholar 

  47. S. Stankovich, R.D. Piner, X. Chen, N. Wu, S.T. Nguyen, R.S. Ruoff, Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate. J. Mater. Chem. 16, 155–158 (2006). https://doi.org/10.1039/B512799H

    Article  CAS  Google Scholar 

  48. V. Subramanian, E.E. Wolf, P.V. Kamat, Green emission to probe photoinduced charging events in ZnO–Au nanoparticles. charge distribution and fermi-level equilibration. J. Phys. Chem. B 107, 7479–7485 (2003). https://doi.org/10.1021/jp0275037

    Article  CAS  Google Scholar 

  49. H. Sun, S. Wang, H.M. Ang, M.O. Tadé, Q. Li, Halogen element modified titanium dioxide for visible light photocatalysis. Chem. Eng. J. 162, 437–447 (2010). https://doi.org/10.1016/j.cej.2010.05.069

    Article  CAS  Google Scholar 

  50. S. Suwanboon, P. Amornpitoksuk, A. Haidoux, J.C. Tedenac, Structural and optical properties of undoped and aluminium doped zinc oxide nanoparticles via precipitation method at low temperature. J. Alloy. Compd. 462, 335–339 (2008). https://doi.org/10.1016/j.jallcom.2007.08.048

    Article  CAS  Google Scholar 

  51. L. Sygellou, G. Paterakis, C. Galiotis, D. Tasis, Work function tuning of reduced graphene oxide thin films. J. Phys. Chem. C 120, 281–290 (2016). https://doi.org/10.1021/acs.jpcc.5b09234

    Article  CAS  Google Scholar 

  52. Tassalit D, Laoufi AN, Bentahar F (2011) Photocatalytic deterioration of tylosin in an aqueous suspension using UV/TiO2. Sci. Adv. Mater. 3:944–948 https://doi.org/10.1166/sam.2011.1243

    Article  CAS  Google Scholar 

  53. Y. Tian, B. Chang, J. Fu, F. Xi, X. Dong, Yellow–colored mesoporous pure titania and its high stability in visible light photocatalysis. Powder Technol. 245, 227–232 (2013). https://doi.org/10.1016/j.powtec.2013.04.036

    Article  CAS  Google Scholar 

  54. K. Ullah, Z.-D. Meng, S. Ye, L. Zhu, W.-C. Oh, Synthesis and characterization of novel PbS–graphene/TiO2 composite with enhanced photocatalytic activity. J. Ind. Eng. Chem. 20, 1035–1042 (2014). https://doi.org/10.1016/j.jiec.2013.06.040

    Article  CAS  Google Scholar 

  55. J. Ungelenk, C. Feldmann, Synthesis of faceted [small beta]-SnWO4 microcrystals with enhanced visible-light photocatalytic properties. Chem. Commun. 48, 7838–7840 (2012). https://doi.org/10.1039/C2CC33224H

    Article  CAS  Google Scholar 

  56. J. Wang, T. Tsuzuki, B. Tang, X. Hou, L. Sun, X. Wang, Reduced graphene oxide/ZnO composite: reusable adsorbent for pollutant management. ACS Appl. Mater. Interfaces. 4, 3084–3090 (2012). https://doi.org/10.1021/am300445f

    Article  CAS  PubMed  Google Scholar 

  57. M. Wang et al., Optical and photoluminescent properties of sol-gel Al-doped ZnO thin films. Mater. Lett. 61, 1118–1121 (2007). https://doi.org/10.1016/j.matlet.2006.06.065

    Article  CAS  Google Scholar 

  58. B. Weng, J. Wu, N. Zhang, Y.-J. Xu, Observing the role of graphene in boosting the two-electron reduction of oxygen in graphene–WO3 nanorod photocatalysts. Langmuir 30, 5574–5584 (2014). https://doi.org/10.1021/la4048566

    Article  CAS  PubMed  Google Scholar 

  59. P. Worajittiphon, K. Pingmuang, B. Inceesungvorn, N. Wetchakun, S. Phanichphant, Enhancing the photocatalytic activity of ZnO nanoparticles for efficient rhodamine B degradation by functionalised graphene nanoplatelets. Ceram. Int. 41, 1885–1889 (2015). https://doi.org/10.1016/j.ceramint.2014.09.023

    Article  CAS  Google Scholar 

  60. Q. Xiao, L. Ouyang, Photocatalytic photodegradation of xanthate over Zn1−xMnxO under visible light irradiation. J. Alloy. Compd. 479, L4–L7 (2009). https://doi.org/10.1016/j.jallcom.2008.12.085

    Article  CAS  Google Scholar 

  61. Q. Xiao, J. Zhang, C. Xiao, X. Tan, Photocatalytic decolorization of methylene blue over Zn1 – xCoxO under visible light irradiation. Mater. Sci. Eng. 142, 121–125 (2007). https://doi.org/10.1016/j.mseb.2007.06.021

    Article  CAS  Google Scholar 

  62. D. Yang et al., Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy. Carbon 47, 145–152 (2009). https://doi.org/10.1016/j.carbon.2008.09.045

    Article  CAS  Google Scholar 

  63. N.R. Yogamalar, A.C. Bose, Absorption–emission study of hydrothermally grown Al:ZnO nanostructures. J. Alloy. Compd. 509, 8493–8500 (2011). https://doi.org/10.1016/j.jallcom.2011.06.012

    Article  CAS  Google Scholar 

  64. J. Yu, J. Jin, B. Cheng, M. Jaroniec, A noble metal-free reduced graphene oxide-CdS nanorod composite for the enhanced visible-light photocatalytic reduction of CO2 to solar fuel. J. Mater. Chem. A 2, 3407–3416 (2014). https://doi.org/10.1039/C3TA14493C

    Article  CAS  Google Scholar 

  65. D. Zeng, P. Gong, Y. Chen, C. Wang, D.-L. Peng, Preparation of multi-branched Au–ZnO hybrid nanocrystals on graphene for enhanced photocatalytic performance. Mater. Lett. 161, 379–383 (2015). https://doi.org/10.1016/j.matlet.2015.08.153

    Article  CAS  Google Scholar 

  66. L. Zhang, N. Li, H. Jiu, G. Qi, Y. Huang, ZnO-reduced graphene oxide nanocomposites as efficient photocatalysts for photocatalytic reduction of CO2. Ceram. Int. 41, 6256–6262 (2015). https://doi.org/10.1016/j.ceramint.2015.01.044

    Article  CAS  Google Scholar 

  67. L. Zhang et al., Significantly enhanced photocatalytic activities and charge separation mechanism of Pd-decorated ZnO–graphene oxide nanocomposites. ACS Appl. Mater. Interfaces 6, 3623–3629 (2014). https://doi.org/10.1021/am405872r

    Article  CAS  PubMed  Google Scholar 

  68. Y. Zheng, L. Zheng, Y. Zhan, X. Lin, Q. Zheng, K. Wei, Ag/ZnO heterostructure nanocrystals: synthesis, characterization and photocatalysis. Inorg. Chem. 46, 6980–6986 (2007). https://doi.org/10.1021/ic700688f

    Article  CAS  PubMed  Google Scholar 

  69. J.B. Zhong, J.Z. Li, X.Y. He, J. Zeng, Y. Lu, W. Hu, K. Lin, Improved photocatalytic performance of Pd-doped ZnO. Curr. Appl. Phys. 12, 998–1001 (2012). https://doi.org/10.1016/j.cap.2012.01.003

    Article  Google Scholar 

  70. G. Zhou, D.-W. Wang, L.-C. Yin, N. Li, F. Li, H.-M. Cheng, Oxygen bridges between NiO nanosheets and graphene for improvement of lithium storage. ACS Nano 6, 3214–3223 (2012). https://doi.org/10.1021/nn300098m

    Article  CAS  PubMed  Google Scholar 

  71. X. Zhou, T. Shi, H. Zhou, Hydrothermal preparation of ZnO-reduced graphene oxide hybrid with high performance in photocatalytic degradation. Appl. Surf. Sci. 258, 6204–6211 (2012). https://doi.org/10.1016/j.apsusc.2012.02.131

    Article  CAS  Google Scholar 

  72. F. Zou, Y. Yu, N. Cao, L. Wu, J. Zhi, A novel approach for synthesis of TiO2–graphene nanocomposites and their photoelectrical properties. Scr. Mater. 64, 621–624 (2011). https://doi.org/10.1016/j.scriptamat.2010.12.003

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Asghar Khayatian.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Research Involving Human Participants and/or Animal

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khayatian, S.A., Kompany, A., Shahtahmassebi, N. et al. Enhanced Photocatalytic Performance of Al-Doped ZnO NPs-Reduced Graphene Oxide Nanocomposite for Removing of Methyl Orange Dye from Water Under Visible-Light Irradiation. J Inorg Organomet Polym 28, 2677–2688 (2018). https://doi.org/10.1007/s10904-018-0940-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-018-0940-6

Keywords

Navigation