Skip to main content
Log in

Slow Released Delivery of Alendronate Using β-Cyclodextrine Modified Fe–MOF Encapsulated Porous Hydroxyapatite

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

In this study, an efficient and robust metal organic framework (MOF)-based drug delivery system comprising high potential for slow release rate is introduced. Porous Fe-MIL-88B-NH2 nano-carrier, a series of flexible designed MOF materials, was synthesized and evaluated for slow released of alendronate (Alen). The Fe-MIL-88B-NH2 nano-carrier was synthesized by direct mixing of 2-aminoterephthalic acid and ferric chloride in the presence of pluronic F127 and acetic acid. Then, the surface of the nanoparticles was modified using β-cyclodextrin in order to increase the loading of Alen. After the loading process, the nano-drug carrier was encapsulated with hydroxyapatite (HAp) as a coating agent having the bone-like structure, which assists in lowering the drug release rate by decreasing the demand dosage. HAp is in high compatibility with Alen in terms of their positive impact on body bones. In order to confirm the synthesis of the nano-carrier system, scanning electron microscope, X-ray powder diffraction, Fourier transfer infrared, thermogravimetric analysis and BET surface analysis were used. Finally controlled released of Alen over 28 days was studied, which showed good results in comparison with previous systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J.H. Tyman, Synthetic and Natural Phenols (Elsevier, New York, 1996)

    Google Scholar 

  2. J. Lee, O.K. Farha, J. Roberts, K.A. Scheidt, S.T. Nguyen, J.T. Hupp, Metal–organic framework materials as catalysts. Chem. Soc. Rev. 38, 1450–1459 (2009)

    Article  CAS  PubMed  Google Scholar 

  3. A. Dhakshinamoorthy, M. Opanasenko, J. Čejka, H. Garcia, Metal organic frameworks as solid catalysts in condensation reactions of carbonyl groups. Adv. Synth. Catal. 355, 247–268 (2013)

    CAS  Google Scholar 

  4. A. Dhakshinamoorthy, M. Opanasenko, J. Čejka, H. Garcia, Metal organic frameworks as heterogeneous catalysts for the production of fine chemicals. Catal. Sci. Technol. 3, 2509–2540 (2013)

    Article  CAS  Google Scholar 

  5. C.-H. Kuo, Y. Tang, L.-Y. Chou, B.T. Sneed, C.N. Brodsky, Z. Zhao, C.-K. Tsung, Yolk–shell nanocrystal@ ZIF-8 nanostructures for gas-phase heterogeneous catalysis with selectivity control. J. Am. Chem. Soc. 134, 14345–14348 (2012)

    Article  CAS  PubMed  Google Scholar 

  6. A.C. McKinlay, R.E. Morris, P. Horcajada, G. Férey, R. Gref, P. Couvreur, C. Serre, BioMOFs: metal–organic frameworks for biological and medical applications. ‎Angew. Chem. Int. Ed. 49, 6260–6266 (2010)

    Article  CAS  Google Scholar 

  7. A. Corma, State of the art and future challenges of zeolites as catalysts. J. Catal. 216, 298–312 (2003)

    Article  CAS  Google Scholar 

  8. A.C. McKinlay, B. Xiao, D.S. Wragg, P.S. Wheatley, I.L. Megson, R.E. Morris, Exceptional behavior over the whole adsorption-storage-delivery cycle for NO in porous metal organic frameworks. J. Am. Chem. Soc. 130, 10440–10444 (2008)

    Article  CAS  PubMed  Google Scholar 

  9. B. Xiao, P.S. Wheatley, X. Zhao, A.J. Fletcher, S. Fox, A.G. Rossi, I.L. Megson, S. Bordiga, L. Regli, K.M. Thomas, High-capacity hydrogen and nitric oxide adsorption and storage in a metal-organic framework. J. Am. Chem. Soc. 129, 1203–1209 (2007)

    Article  CAS  PubMed  Google Scholar 

  10. S. Ma, H.-C. Zhou, Gas storage in porous metal–organic frameworks for clean energy applications. Chem. Commun. 46, 44–53 (2010)

    Article  CAS  Google Scholar 

  11. L. Hamon, C. Serre, T. Devic, T. Loiseau, F. Millange, G. Férey, G.D. Weireld, Comparative study of hydrogen sulfide adsorption in the MIL-53 (Al, Cr, Fe), MIL-47 (V), MIL-100 (Cr), and MIL-101 (Cr) metal–organic frameworks at room temperature. J. Am. Chem. Soc. 131, 8775–8777 (2009)

    Article  CAS  PubMed  Google Scholar 

  12. M. Dincă, J.R. Long, Hydrogen storage in microporous metal–organic frameworks with exposed metal sites. ‎Angew. Chem. Int. Ed. 47, 6766–6779 (2008)

    Article  CAS  Google Scholar 

  13. W.J. Rieter, K.M. Taylor, H. An, W. Lin, W. Lin, Nanoscale metal-organic frameworks as potential multimodal contrast enhancing agents. Am. Chem. Soc. 128, 9024–9025 (2006)

    Article  CAS  Google Scholar 

  14. K.M. Taylor, W.J. Rieter, W. Lin, Manganese-based nanoscale metal–organic frameworks for magnetic resonance imaging. Am. Chem. Soc. 130, 14358–14359 (2008)

    Article  CAS  Google Scholar 

  15. Z.P. Xu, Q.H. Zeng, G.Q. Lu, A.B. Yu, Inorganic nanoparticles as carriers for efficient cellular delivery. Chem. Eng. Sci. 61, 1027–1040 (2006)

    Article  CAS  Google Scholar 

  16. C.J. Murphy, A.M. Gole, J.W. Stone, P.N. Sisco, A.M. Alkilany, E.C. Goldsmith, S.C. Baxter, Gold nanoparticles in biology: beyond toxicity to cellular imaging. ‎Acc. Chem. Res. 41, 1721–1730 (2008)

    Article  CAS  PubMed  Google Scholar 

  17. H. Deng, C.J. Doonan, H. Furukawa, R.B. Ferreira, J. Towne, C.B. Knobler, B. Wang, O.M. Yaghi, Multiple functional groups of varying ratios in metal-organic frameworks. Science 327, 846–850 (2010)

    Article  CAS  PubMed  Google Scholar 

  18. M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O’keeffe, O.M. Yaghi, Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295, 469–472 (2002)

    Article  CAS  PubMed  Google Scholar 

  19. B. Hoskins, R. Robson, Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of the zinc cyanide and cadmium cyanide structures and the synthesis and structure of the diamond-related frameworks [N(CH3)4][CuIZnII(CN)4] and CuI [4, 4′, 4″, 4‴-tetracyanotetraphenylmethane] BF4·xC6H5NO2. J. Am. Chem. Soc. 112, 1546–1554 (1990)

    Article  CAS  Google Scholar 

  20. Z. Wang, S.M. Cohen, Postsynthetic covalent modification of a neutral metal-organic framework. J. Am. Chem. Soc. 129, 12368–12369 (2007)

    Article  CAS  PubMed  Google Scholar 

  21. C. Janiak, J.K. Vieth, MOFs, MILs and more: concepts, properties and applications for porous coordination networks (PCNs). ‎New J. Chem. 34, 2366–2388 (2010)

    Article  CAS  Google Scholar 

  22. M.T. Drake, B.L. Clarke, S. Khosla, Bisphosphonates: mechanism of action and role in clinical practice. In Mayo Clinic Proceedings (Elsevier, New York, 2008), pp. 1032–1045

  23. G.A. Rodan, H.A. Fleisch, Bisphosphonates: mechanisms of action. J. Clin. Investig. 97, 2692 (1996)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. H.-J. Moon, Y.-P. Yun, C.-W. Han, M.S. Kim, S.E. Kim, M.S. Bae, G.-T. Kim, Y.-S. Choi, E.-H. Hwang, J.W. Lee, Effect of heparin and alendronate coating on titanium surfaces on inhibition of osteoclast and enhancement of osteoblast function. Biochem. Biophys. Res. Commun. 413, 194–200 (2011)

    Article  CAS  PubMed  Google Scholar 

  25. K. Miladi, S. Sfar, H. Fessi, A. Elaissari, Drug carriers in osteoporosis: preparation, drug encapsulation and applications. Int. J. Pharm. 445, 181–195 (2013)

    Article  CAS  PubMed  Google Scholar 

  26. S. Cremers, S. Papapoulos, Pharmacology of bisphosphonates. Bone 49, 42–49 (2011)

    Article  CAS  PubMed  Google Scholar 

  27. J. Lin, Bisphosphonates: a review of their pharmacokinetic properties. Bone 18, 75–85 (1996)

    Article  CAS  PubMed  Google Scholar 

  28. J. Marshall, K. Rainsford, C. James, R. Hunt, A randomized controlled trial to assess alendronate-associated injury of the upper gastrointestinal tract. Aliment. Pharmacol. Ther. 14, 1451–1457 (2000)

    Article  CAS  PubMed  Google Scholar 

  29. F. Lanza, Bisphosphonate mucosal injury—the end of the story? Dig. Liver Dis. 35, 67–70 (2003)

    Article  CAS  PubMed  Google Scholar 

  30. L. Ochiuz, C. Grigoras, M. Popa, I. Stoleriu, C. Munteanu, D. Timofte, L. Profire, A.G. Grigoras, Alendronate-loaded modified drug delivery lipid particles intended for improved oral and topical administration. Molecules 21, 858 (2016)

    Article  CAS  PubMed Central  Google Scholar 

  31. J.H. Lee, I.H. Ko, S.-H. Jeon, J.-H. Chae, J.H. Chang, Micro-structured hydroxyapatite microspheres for local delivery of alendronate and BMP-2 carriers. Mater. Lett. 105, 136–139 (2013)

    Article  CAS  Google Scholar 

  32. S. Tarafder, S. Bose, Polycaprolactone-coated 3D printed tricalcium phosphate scaffolds for bone tissue engineering: in vitro alendronate release behavior and local delivery effect on in vivo osteogenesis. ACS Appl. Mater. Interfaces 6, 9955–9965 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. K. Miladi, S. Sfar, H. Fessi, A. Elaissari, Enhancement of alendronate encapsulation in chitosan nanoparticles. J. Drug Deliv. Sci. Technol. 30, 391–396 (2015)

    Article  CAS  Google Scholar 

  34. W. Hur, M. Park, J.Y. Lee, M.H. Kim, S.H. Lee, C.G. Park, S.-N. Kim, H.S. Min, H.J. Min, J.H. Chai, Bioabsorbable bone plates enabled with local, sustained delivery of alendronate for bone regeneration. J. Control. Release 222, 97–106 (2016)

    Article  CAS  PubMed  Google Scholar 

  35. E.M. Del Valle, Cyclodextrins and their uses: a review. Process Biochem. 39, 1033–1046 (2004)

    Article  CAS  Google Scholar 

  36. L. Rehmann, H. Yoshii, T. Furuta, Characteristics of modified β-cyclodextrin bound to cellulose powder. Starch-Stärke 55, 313–318 (2003)

    Article  CAS  Google Scholar 

  37. A. Noomen, S. Hbaieb, H. Parrot-Lopez, R. Kalfat, H. Fessi, N. Amdouni, Y. Chevalier, Emulsions of β-cyclodextrins grafted to silicone for the transport of antifungal drugs. Mater. Sci. Eng. C 28, 705–715 (2008)

    Article  CAS  Google Scholar 

  38. B. Martel, M. Weltrowski, D. Ruffin, M. Morcellet, Polycarboxylic acids as crosslinking agents for grafting cyclodextrins onto cotton and wool fabrics: study of the process parameters. J. Appl. Polym. Sci. 83, 1449–1456 (2002)

    Article  CAS  Google Scholar 

  39. F. Macaev, V. Boldescu, Cyclodextrins in asymmetric and stereospecific synthesis. Symmetry 7, 1699–1720 (2015)

    Article  CAS  Google Scholar 

  40. H. Tang, A.S. Sutherland, L.M. Osusky, Y. Li, J.F. Holzwarth, C. Bohne, Chiral recognition for the complexation dynamics of β-cyclodextrin with the enantiomers of 2-naphthyl-1-ethanol. Photochem. Photobiol. Sci. 13, 358–369 (2014)

    Article  CAS  PubMed  Google Scholar 

  41. L.R. Bordajandi, P. Korytár, J. de Boer, M.J. González, Enantiomeric separation of chiral polychlorinated biphenyls on β-cyclodextrin capillary columns by means of heart-cut multidimensional gas chromatography and comprehensive two-dimensional gas chromatography. Application to food samples. J. Sep. Sci. 28, 163–171 (2005)

    Article  CAS  PubMed  Google Scholar 

  42. G. Fang, M. Xu, F. Zeng, S. Wu, β-cyclodextrin as the vehicle for forming ratiometric mercury ion sensor usable in aqueous media, biological fluids, and live cells. Langmuir 26, 17764–17771 (2010)

    Article  CAS  PubMed  Google Scholar 

  43. D. Xiao, X. Zhou, H. Li, Y. Fu, K. Duan, X. Lu, X. Zheng, J. Weng, Fabrication of hollow hydroxyapatite particles assisted by small organic molecule and effect of microstructure on protein adsorption. J. Eur. Ceram. Soc. 35, 1971–1978 (2015)

    Article  CAS  Google Scholar 

  44. Z. Li, T. Wen, Y. Su, X. Wei, C. He, D. Wang, Hollow hydroxyapatite spheres fabrication with three-dimensional hydrogel template. CrystEngComm 16, 4202–4209 (2014)

    Article  CAS  Google Scholar 

  45. H. Zhou, J. Lee, Nanoscale hydroxyapatite particles for bone tissue engineering. Acta Biomater. 7, 2769–2781 (2011)

    Article  CAS  PubMed  Google Scholar 

  46. C.B. Danoux, D. Barbieri, H. Yuan, J.D. de Bruijn, C.A. van Blitterswijk, P. Habibovic, In vitro and in vivo bioactivity assessment of a polylactic acid/hydroxyapatite composite for bone regeneration. Biomatter 4, e27664 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  47. S. Xu, J. Shi, D. Feng, L. Yang, S. Cao, Hollow hierarchical hydroxyapatite/Au/polyelectrolyte hybrid microparticles for multi-responsive drug delivery. J. Mater. Chem. B. 2, 6500–6507 (2014)

    Article  CAS  PubMed  Google Scholar 

  48. V. Orlovskii, V. Komlev, S.M. Barinov, Hydroxyapatite and hydroxyapatite-based ceramics. Inorg. Mater. 38, 973–984 (2002)

    Article  CAS  Google Scholar 

  49. C.M. Kanno, R.L. Sanders, S.M. Flynn, G. Lessard, S.C. Myneni, Novel apatite-based sorbent for defluoridation: synthesis and sorption characteristics of nano-micro-crystalline hydroxyapatite-coated-limestone. Environ. Sci. Technol. 48, 5798–5807 (2014)

    Article  CAS  PubMed  Google Scholar 

  50. L.J. Cummings, Hydroxyapatite chromatography: purification strategies for recombinant proteins. ‎Methods Enzymol. 541, 67–83 (2013)

    Article  CAS  Google Scholar 

  51. S. Kano, A. Yamazaki, R. Otsuka, M. Ohgaki, M. Akao, H. Aoki, Application of hydroxyapatite-sol as drug carrier. Biomed. Mater. Eng. 4, 283–290 (1994)

    CAS  PubMed  Google Scholar 

  52. K. Tomoda, H. Ariizumi, T. Nakaji, K. Makino, Hydroxyapatite particles as drug carriers for proteins. Colloids Surf. B 76, 226–235 (2010)

    Article  CAS  Google Scholar 

  53. S.P. Victor, W. Paul, M. Jayabalan, C.P. Sharma, Supramolecular hydroxyapatite complexes as theranostic near-infrared luminescent drug carriers. CrystEngComm 16, 9033–9042 (2014)

    Article  CAS  Google Scholar 

  54. M.-H. Pham, G.-T. Vuong, A.-T. Vu, T.-O. Do, Novel route to size-controlled Fe–MIL-88B–NH2 metal–organic framework nanocrystals. Langmuir 27, 15261–15267 (2011)

    Article  CAS  PubMed  Google Scholar 

  55. J. Kuljanin, I. Janković, J. Nedeljković, D. Prstojević, V. Marinković, Spectrophotometric determination of alendronate in pharmaceutical formulations via complex formation with Fe (III) ions. J. Pharm. Biomed. 28, 1215–1220 (2002)

    Article  CAS  Google Scholar 

  56. J. Biernacka, K. Betlejewska-Kielak, J. Witowska-Jarosz, E. Kłosińska-Szmurło, A.P. Mazurek, Mass spectrometry and molecular modeling studies on the inclusion complexes between alendronate and β-cyclodextrin. J. Incl. Phenom. Mol. Recognit. Chem. 78, 437–443 (2014)

    Article  CAS  Google Scholar 

Download references

Funding

Funding was provided by Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences (IR) and Shahrood University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to B. Bahramian or L. Ma’mani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golmohamadpour, A., Bahramian, B., Shafiee, A. et al. Slow Released Delivery of Alendronate Using β-Cyclodextrine Modified Fe–MOF Encapsulated Porous Hydroxyapatite. J Inorg Organomet Polym 28, 1991–2000 (2018). https://doi.org/10.1007/s10904-018-0871-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-018-0871-2

Keywords

Navigation