Skip to main content
Log in

Chemical Synthesis and Characterization of ZnO–TiO2 Semiconductor Nanocomposites: Tentative Mechanism of Particle Formation

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The compounds of ZnO–TiO2 can combine the characteristics of the individual oxides which has allowed them to be used as photocatalysts in general, photodegradants in the degradation of dyes, photocatalytic oxidation of NOx, antimicrobial, among other applications. In this study, ZnO–TiO2 semiconductor nanocomposites were synthesized in a controlled way at low temperature. These samples of ZnO–TiO2 were characterized using thermal analysis (TDA/TGA), IR and UV–Vis absorption spectroscopies, X-ray diffraction, and scanning electron microscopy. The primary particles showed a nanometric size (< 100 nm) and spheroidal morphology. All samples presented zincite as the main crystalline phase. When Ti4+ was added, the peaks of the diffractograms shifted slightly with respect to pure ZnO. This indicates the formation of a solid solution. Zn2TiO4 was observed in doped ZnO samples treated at 700 °C. The UV–Vis absorption spectra showed a band in the range between 350 and 425 nm, with a maximum around 375 nm (3.31 eV). With the addition of Ti4+, the nanocomposites showed a better absorbance in the visible range. Considering the nature of the synthesis process used, a mechanism was proposed to explanation of the formation of Nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 1
Scheme 2
Fig. 9
Scheme 3

Similar content being viewed by others

References

  1. F.N. Dulin, D.E. Rase, Phase equilibria in system ZnO-TiO2. J. Am. Ceram. Soc. 43(3), 125–131 (1960). https://doi.org/10.1111/j.1151-2916.1960.tb14326.x

    Article  CAS  Google Scholar 

  2. S.F. Bartram, R.A. Slepetys, Compound formation and crystal structure in the system ZnO-TiO2. J. Am. Ceram. Soc. 44(10), 493–499 (1961). https://doi.org/10.1111/j.1151-2916.1961.tb13712.x

    Article  Google Scholar 

  3. A. Navrotsky, A. Muan, Phase equilibria and thermodinamic properties of solid solutions in the systems ZnO-CoO-TiO2 and ZnO-NiO-TiO2 at 1050 °C. J. Inorg. Nucl. Chem. 32, 3471–3484 (1970). https://doi.org/10.1016/0022-1902(70)80156-7

    Article  CAS  Google Scholar 

  4. U. Steinike, B. Wallis, Formation and structure of Ti-Zn-oxides. Cryst. Res. Technol. 32(1), 187–193 (1997). https://doi.org/10.1002/crat.2170320119

    Article  CAS  Google Scholar 

  5. D. Chen, H. Zhang, S. Hu, J. Li, Preparation and enhanced photoelectrochemical performance of coupled bicomponent ZnO-TiO2 nanocomposites. J. Phys. Chem. C 112, 117–122 (2008). https://doi.org/10.1021/jp077236a

    Article  CAS  Google Scholar 

  6. H.E. Brown, Zinc Oxide: Properties and Applications (International Lead Zinc Research Organization, New York, 1976)

    Google Scholar 

  7. U. Ozgur, I.A. Ya, C. Liu et al., A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98, 041301 (2005). https://doi.org/10.1063/1.1992666

    Article  CAS  Google Scholar 

  8. C. Klingshim, ZnO: from basics towards applications. Phys. Status Solidi B 244, 3027–3037 (2007). https://doi.org/10.1002/pssb.200743072

    Article  CAS  Google Scholar 

  9. C. Klingshim, ZnO material, physics and applications. ChemPhysChem 8, 782–803 (2007). https://doi.org/10.1002/cphc.200700002

    Article  CAS  Google Scholar 

  10. A. Moezzi, A.M. McDonagh, M.B. Cortie, Zinc oxide particles: synthesis, properties and applications. Chem. Eng. J. 185–186, 1–22 (2012). https://doi.org/10.1016/j.cej.2012.01.076

    Article  CAS  Google Scholar 

  11. B. Djurišić, Y.H. Leung, Optical properties of ZnO nanostructures. Small 2, 944–961 (2006). https://doi.org/10.1002/smll.200600134

    Article  CAS  PubMed  Google Scholar 

  12. C. Jagadish, S. J. Pearton (eds.), Zinc Oxide Bulk, Thin Films and Nanostructures: Processing, Properties and Applications (Elsevier Ltd., Amsterdam, 2006)

    Google Scholar 

  13. H. Morkoç, Ü Özgür, Zinc Oxide: Fundamentals, Materials and Device Technology (Wiley, Weinheim, 2009). https://doi.org/10.1002/9783527623945

    Book  Google Scholar 

  14. F. Klingshirn, B.K. Meyer, A. Waag et al., Zinc Oxide: From Fundamental Properties Towards Novel Applications (Springer, Berlin, 2010). https://doi.org/10.1007/978-3-642-10577-7

    Book  Google Scholar 

  15. A. Janotti, C.G. Van der Walle, Fundamentals of zinc oxide as a semiconductor. Rep. Prog. Phys. 72, 126501/126501–126501/12659 (2009). https://doi.org/10.1088/0034-4885/72/12/126501

    Article  CAS  Google Scholar 

  16. C. Wöll, The chemistry and physics of zinc oxide surfaces. Prog. Surf. Sci. 82, 55–120 (2007). https://doi.org/10.1016/j.progsurf.2006.12.002

    Article  CAS  Google Scholar 

  17. J.R. Lead, E. Smith, Environmental and Human Health Impacts of Nanotechnology (Wiley, West Sussex, 2009). https://doi.org/10.1002/9781444307504

    Book  Google Scholar 

  18. P. Pichat (ed.), Photocatalysis and Water Purification, Materials for Sustainable Energy and Development (Wiley, Weinheim, 2013). https://doi.org/10.1002/9783527645404

    Book  Google Scholar 

  19. H. Kisch, Semiconductor Photocatalisys: Principles and Applications. (Wiley, Weinheim, 2015). https://doi.org/10.1002/9783527673315

    Book  Google Scholar 

  20. D. Vogel, P. Krüger, J. Pollmann, Ab initio electronic-structure calculations for II-VI semiconductors using self-interaction-corrected pseudopotentials. Phys. Rev. B 52, R14316 (1995). https://doi.org/10.1103/PhysRevB.52.R14316

    Article  CAS  Google Scholar 

  21. P.J. Nieuwenhuizen, Zinc accelerator complexes: versatile homogeneous catalysts in sulfur vulcanization. Appl. Catal. A 207, 55–68 (2001). https://doi.org/10.1016/S0926-860X(00)00613-X

    Article  CAS  Google Scholar 

  22. G. Heiland, Zum Einfluβ von adsorbierten sauerstoff auf die elektrische leitfäheigkeit von zinkoxydkristallen. Z. Phys. 138, 459–464 (1954). https://doi.org/10.1007/BF01340692

    Article  CAS  Google Scholar 

  23. N.M. Beekmans, Effect of oxygen chemisorption and photodesorption on the conductivity of ZnO powder layers. J. Chem. Soc. Faraday Trans. 1 74, 31–45 (1978). https://doi.org/10.1039/F19787400031

    Article  CAS  Google Scholar 

  24. M. Matsuoka, Nonohmic properties of zinc oxide ceramics. Jpn. J. Appl. Phys. 10(6), 736–746 (1971). https://doi.org/10.1143/JJAP.10.736

    Article  CAS  Google Scholar 

  25. X. Chen, S.S. Mao, Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem. Rev. 107, 2891–2959 (2007). https://doi.org/10.1021/cr0500535

    Article  CAS  PubMed  Google Scholar 

  26. S.M. Gupta, M. Tripathi, A review of TiO2 nanoparticles. Chin. Sci. Bull. 56(16), 1639–1657 (2011). https://doi.org/10.1007/s11434-011-4476-1

    Article  CAS  Google Scholar 

  27. J.F. Banfield, D.R. Veblen, Conversion of perovskite to anatase and TiO2 (β): a TEM study and the use of fundamental building blocks for understanding relations among the TiO2 minerals. Am. Mineral. 77, 545–557 (1992)

    CAS  Google Scholar 

  28. M. Kaneko, I. Okura eds., Photocatalysis: Science and Technology (Spring, New York, 2002). https://doi.org/10.1016/S1010-6030(03)00234-X

    Book  Google Scholar 

  29. M. Anpo, P. V. Kamat (eds.), Environmentally Benign Photocatalysts (Springer, New York, 2010). https://doi.org/10.1007/978-0-387-48444-0

    Book  Google Scholar 

  30. G. Nogami, R. Shiratsuchi, S. Ohkubo, Energy relaxation mechanism of electrolumininescence in sintered TiO2 electrodes. J. Electrochem. Soc. 138(3), 751–758 (1991). https://doi.org/10.1149/1.2085670

    Article  CAS  Google Scholar 

  31. J. Geserick, T. Froeschl, N. Huesing et al., Molecular approaches towards mixed metal oxides and their behaviour in mixed oxide support Au catalysts for CO oxidation. Dalton Trans. 40, 3269–3286 (2011). https://doi.org/10.1039/C0DT00911C

    Article  CAS  PubMed  Google Scholar 

  32. Z. Zhang, A. Kladi, X.E. Verykios, Spectroscopic study of the effects of carrier doping on the surface structure of Rh/TiO2 catalysts and on their interaction with CO and H2. J. Phys. Chem. 98, 6804–6811 (1994). https://doi.org/10.1021/j100078a024

    Article  CAS  Google Scholar 

  33. M.M. Shubert, V. Plzak, J. Garche et al., Activity, selectivity and long-term stability of different metal oxide supported gold catalysts for the preferential CO oxidation in H2-rich gas. Catal. Lett. 76, 143–150 (2001). https://doi.org/10.1023/A:1012365710979

    Article  Google Scholar 

  34. W.P. Hsu, R. Yu, E. Matijevic, Paper whiteners: I. Titania coated silica. J. Colloid Interface Sci. 156, 56–65 (1993). https://doi.org/10.1006/jcis.1993.1080

    Article  CAS  Google Scholar 

  35. A. Mills, H.R. Davis, D. Worsley, Water purification by semiconductor photocatalysis. Chem. Soc. Rev. 22, 417–425 (1993). https://doi.org/10.1039/CS9932200417

    Article  CAS  Google Scholar 

  36. P.C. Maness, S. Smolinski, D.M. Blake et al., Bactericidal activity of photocatalytic TiO2 reaction: toward an understanding of its killing mechanism. Appl. Environ. Microbiol. 65, 4094–4098 (1999)

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Y. Paz, Z. Luo, L. Rabenberg et al., Photooxidative self-cleaning transparent titanium dioxide films on glass. J. Mater. Res. 10, 2842–2848 (1995). https://doi.org/10.1557/JMR.1995.2842

    Article  CAS  Google Scholar 

  38. G. Sheveglieri (ed.), Gas Sensors (Kluwer Academic Publishers, Dordrecht, 1992)

    Google Scholar 

  39. G. Eranna, Metal Oxide Nanostructures as Gas Sensing Devices (Taylor & Francis, Boca Raton, 2012). https://doi.org/10.1201/b11367-1

    Book  Google Scholar 

  40. S.S. Silva, F. Magalhães, M.T.C. Sansiviero, Nanocompósitos semicondutores ZnO/TiO2 testes fotocatalíticos. Quím. Nova 33(1), 85–89 (2010). https://doi.org/10.1590/S0100-40422010000100016

    Article  CAS  Google Scholar 

  41. G. Marcì, V. Augugliaro, M.J. López-Muñoz et al., Preparation characterization and photocatalytic activity of polycrystalline ZnO/TiO2 systems. 2. Surface, bulk characterization, and 4-Nitrophenol photodegradation in liquid–solid regime. J. Phys. Chem. B 105(5), 1033–1040 (2001). https://doi.org/10.1021/jp003173j

    Article  CAS  Google Scholar 

  42. H. Sutanto, L. Nurhasanah, E. Hidayanto et al., Synthesis and characterization of ZnO:TiO2 nano composites thin films deposited on glass substrate by sol-gel spray coating technique. AIP Conf. Proc. 1699, 040005, (2015). https://doi.org/10.1063/1.4938320

    Article  CAS  Google Scholar 

  43. J.D. Chen, W.S. Liao, Y. Jiang et al., Facile fabrication of ZnO/TiO2 heterogeneous nanofibres and their photocatalytic behaviour and mechanism towards Rhodamine B. Nanomater. Nanotechnol. 6, 9 (2016). https://doi.org/10.5772/62291

    Article  CAS  Google Scholar 

  44. N. Todorova, T. Giannakopoulou, K. Pomoni et al., Photocatalytic NOx oxidation over modified ZnO/TiO2 thin films. Catal. Today 252, 41–46 (2015). https://doi.org/10.1016/j.cattod.2014.11.008

    Article  CAS  Google Scholar 

  45. S. Ruffolo, M. La Russa, M. Malagodi et al., ZnO and ZnTiO3 nanopowders for antimicrobial stone coating. Appl. Phys. A 100(3), 829–834 (2010). https://doi.org/10.1007/s00339-010-5658-4

    Article  CAS  Google Scholar 

  46. A. Habib, T. Shahabat, N.M. Bahadur, I.M. Ismail, A.J. Mahmood, Synthesis and characterization of ZnO-TiO2 nanocomposites and their applications as photocatalysts. Int. Nanolett. 3, 5 (2013). https://doi.org/10.1186/2228-5326-3-5

    Article  CAS  Google Scholar 

  47. W. Ahmad, U. Mehmood, A. Al-Ahmed, F.A. Al-Sulaiman, M.Z. Aslam, M.S. Kamal, R.A. Shawabkeh, Synthesis of Zinc oxide/titanium dioxide (ZnO/TiO2) nanocomposites by wet incipient wetness impregnation method and preparation of ZnO/TiO2 paste using poly (Vynilpyrrolidone) for efficient dye-sensitized solar cells. Electrochim. Acta 222, 473–480 (2016). https://doi.org/10.1016/j.electacta.2016.10.200

    Article  CAS  Google Scholar 

  48. G. Barreca, A.P. Comini, A. Ferrucci, C. Gasparotto, C. Maccato, G. Maragno, E. Sberveglieri, Tondello, First example of ZnO-TiO2 nanocomposites by chemical vapor deposition: structure, morphology, composition, and gas sensing performances. Chem. Mater. 19(23), 5642–5649 (2007). https://doi.org/10.1021/cm7019901

    Article  CAS  Google Scholar 

  49. Y. Dimitriev, Y. Ivarova, A. Staneva, M. Alexandrov, M. Mancheva, R. Yordanova, C. Dushkin, N. Kaneva, C. Iliev, Synthesis of submicron powders of ZnO and ZnO-MnOm (MnOm = TiO2, V2O5) by sol-gel methods. J. Univ. Chem. Technol. Metall. 44(3), 235–242 (2009)

    CAS  Google Scholar 

  50. A.D. Bachvarova-Nedelcheva, R.S. Iordanova, A.M. Stoyanova, R.D. Gegova, Y.B. Dimitriev, A.R. Loukanov, Photocatalytic properties of ZnO/TiO2 powders obtained via combustion gel method. Cent. Eur. J. Chem. 11(5), 364–370 (2013). https://doi.org/10.2478/s11532-012-0167-2

    Article  CAS  Google Scholar 

  51. K. Ohshima, K. Tsuto, K. Okuyama, N. Tohge, Preparation of ZnO-TiO2 composite fine particles using the ultrasonic spray pyrolysis method and their characteristics on ultraviolet cutoff. Aerosol Sci. Technol. 19(4), 468–477 (1993). https://doi.org/10.1080/02786829308959652

    Article  CAS  Google Scholar 

  52. C.H. Ashok, K. Venkateswara Rao, ZnO/TiO2 nanocomposite rods synthesized by microwave-assisted method for humidity sensor application. Superlattices Microstruct. 76, 46–54 (2014). https://doi.org/10.1016/j.spmi.2014.09.029

    Article  CAS  Google Scholar 

  53. X. Liu, Y.-Y. Hu, R.-Y. Chen, Z. Chen, H.-C. Han, Coaxial nanofibers of ZnO-TiO2 heterojunction with high photocatalytic activity by electrospinning technique, synthesis and reactivity in inorganic. Met.-Org. Nano-Met. Chem. 44, 449–453 (2014). https://doi.org/10.1080/15533174.2013.776590

    Article  CAS  Google Scholar 

  54. H. Ullah, K.A. Khan, W.U. Khan, ZnO/TiO2 nanocomposite synthesized by sol gel from highly soluble single source molecular precursor. Chin. J. Chem. Phys. 27(5), 548–554 (2014). https://doi.org/10.1063/1674-0068/27/05/548-554

    Article  CAS  Google Scholar 

  55. V. Lachom, P. Poolcharuansin, P. Laokul, Preparation, characterizations and photocatalyrtic activity of a ZnO/TiO2 nanocomposite. Mater. Res. Express 4(3), 035006 (2017). https://doi.org/10.1088/2053-1591/aa60d

    Article  Google Scholar 

  56. M.Y. Nassar, A.A. Ali, A.S. Amin, A facile Pechini sol–gel synthesis of TiO2/Zn2TiO2/ZnO/C nanocomposite: an efficient catalyst for the photocatalytic degradation of Orange G textile dye. RSC Adv. 7, 30411–30421 (2017). https://doi.org/10.1039/c7ra04899h

    Article  CAS  Google Scholar 

  57. M. Kakihana, M. Yoshimura, Synthesis and characteristics of complex multicomponent oxides prepared by polymer complex method. Bull. Chem. Soc. Jpn. 72, 1427–1443 (1999). https://doi.org/10.1246/bcsj.72.1427

    Article  CAS  Google Scholar 

  58. M. Kakihana, Synthesis of high-performance ceramics based on polymerizable complex method. J. Ceram. Soc. Jpn. 117(8), 857–862 (2009). https://doi.org/10.2109/jcersj2.117.857

    Article  CAS  Google Scholar 

  59. K. Sowri Babu, R.A. Ramachandra, C. Sujatha et al., Synthesis and optical characterization of porous ZnO. J. Adv. Ceram. 2(3), 260–265 (2013). https://doi.org/10.1007/s40145-013-0069-6

    Article  CAS  Google Scholar 

  60. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part B: Applications in Coordination, Organometallic, and Bioinorganic Chemistry (Wiley, New York, 2009). https://doi.org/10.1002/9780470405888

    Book  Google Scholar 

  61. S. Talam, S. Rao Karumuri, N. Gunnam, Synthesis, characterization, and spectroscopic properties of ZnO nanoparticles. ISRN Nanotechnol. (2012). https://doi.org/10.5402/2012/372505

    Article  Google Scholar 

  62. H. Kumar, R. Rani, Structural and optical characterization of ZnO nanoparticles synthesized by microemulsion route. Int. Lett. Chem. Phys. Astron. 19, 26–36 (2013)

    Article  Google Scholar 

  63. M. Kakihana, Sol-gel preparation of high temperature superconducting oxides. J. Sol-Gel. Sci. Technol. 6, 7–55 (1996). https://doi.org/10.1007/BF00402588

    Article  CAS  Google Scholar 

  64. M.S. Thompson, G.H. Wiseman, Synthesis and microstructure of gel derived varistor precursor powders. Ceram. Int. 15, 281–288 (1989). https://doi.org/10.1016/0272-8842(89)90030-8

    Article  CAS  Google Scholar 

  65. L.W. Tai, P.A. Lessing, Modified resin-intermediate processing of perovskite powders: part I. Optimization of polymeric precursors. J. Mater. Res. 7(2), 502–510 (1992). https://doi.org/10.1557/JMR.1992.0502

    Article  CAS  Google Scholar 

  66. M.P. Pechini, U.S. Patent No. 3330,697 (1967)

  67. D. Hennings, W. Mayr, Thermal decomposition of (BaTi) citrates into barium titanate. J. Solid State Chem. 26, 329–338 (1978). https://doi.org/10.1016/0022-4596(78)90167-6

    Article  CAS  Google Scholar 

  68. N.S. Gajbhiye, U. Bhttacharya, V.S. Darshane, Thermal decomposition of zinc-iron citrate precursor. Thermochim. Acta 264, 219–230 (1995). https://doi.org/10.1016/0040-6031(95)02331-U

    Article  CAS  Google Scholar 

  69. Y.H. Ochoa, M. Ponce, J.E. Rodríguez-Páez, Comparative study of two wet chemical methods of BaSnO3 synthesis: mechanism of formation of mixed oxide. Powder Technol. 279, 86–95 (2015). https://doi.org/10.1016/j.powtec.2015.03.049

    Article  CAS  Google Scholar 

Download references

Acknowledgements

AMC is grateful to COLCIENCIAS for the financial assistance received through the Young Researcher program VRI-ID 4285. We would like to thank the University of Cauca for having allowed us the use of their laboratories to carry out the experimental side of this project and the vice-Rectorate of Research (VRI) for logistic support. We are especially grateful to Colin McLachlan for suggestions relating to the English text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. E. Rodríguez-Páez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazabuel-Collazos, A., Rodríguez-Páez, J.E. Chemical Synthesis and Characterization of ZnO–TiO2 Semiconductor Nanocomposites: Tentative Mechanism of Particle Formation. J Inorg Organomet Polym 28, 1739–1752 (2018). https://doi.org/10.1007/s10904-018-0827-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-018-0827-6

Keywords

Navigation