Skip to main content

Advertisement

Log in

In Situ and Ex Situ Immobilization of Nano Gold Particles in Zeolite Framework and a Comparison of Their Photocatalytic Activities

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Gold nano particles—zeolite hybrids (Au-NPs/zeolite) have been prepared in previous works by either of the two approaches, in situ and ex situ and have been studied for their catalytic properties. But a rational comparison of performance of such materials prepared by both the techniques is still lacking. The present work comprises development of zeolite from coal fly ash, a solid waste pollutant, and its conversion into visible light active photocatalyst through immobilization of Au-NPs by both in situ and ex situ techniques. All the catalysts were characterized by Fourier transform infrared, X-ray diffraction, scanning electron microscope, energy dispersive X-ray spectroscopy and diffuse reflectance spectroscopy techniques. They were employed for photocatalytic degradation of p-nitrophenol (p-NP) and phenol. Under optimized condition (catalyst dose = 250 mg/L, [phenolics] = 20 mg/L, pH 4), Au-NPs/zeolite in situ and ex situ materials exhibited 80.8 and 73.7% degradation for p-NP and 78.4 and 63.9% degradation for phenol respectively. On recycling and repeated use in 3rd/4th run, the efficiency decreased slightly from those of fresh and the difference in efficiency between in situ and ex situ catalysts prevailed on reuse also. The configurational arrangement in immobilization of Au-NPs in zeolite framework appeared to be more favorable for activity only in in situ loading.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S. Wang, H. Wu, J. Hazard. Mater. 136, 482 (2006)

    Article  CAS  Google Scholar 

  2. X. Querol, A. Alastuey, J. Fernández-Turiel, A. López-Soler, Fuel 74, 1226 (1995)

    Article  CAS  Google Scholar 

  3. M.H. Emamul, Int. J. Waste Resour. 3, 22 (2013)

    Article  Google Scholar 

  4. Surabhi, Int. J. Appl. Chem. 13, 29 (2017)

    Google Scholar 

  5. B.E. Scheetz, R. Earle, Curr. Opin. Solid State Mater. Sci 3, 510 (1998)

    Article  CAS  Google Scholar 

  6. T. Klamrassamee, P. Pavasant, N. Laosiripojana, Chem. Eng. J 14, 37 (2010)

    Google Scholar 

  7. S. Wang, Environ. Sci. Technol. 42, 7055 (2008)

    Article  CAS  Google Scholar 

  8. D.W. Breck, Zeolite Molecular Sieves: Structure, Chemistry and Use (Wiley, New York, 1973)

    Google Scholar 

  9. A. Corma, H. Garcia, Chem. Commun. 13, 1443 (2004)

    Article  Google Scholar 

  10. A.B. Laursen, K.T. Højholt, L.F. Lundegaard, S.B. Simonsen, S. Helveg, F. Schuth, M. Paul, J.D. Grunwaldt, S. Kegnaes, C.H. Christensen, Angew. Chem. Int. Ed. 49, 3504 (2010)

    Article  CAS  Google Scholar 

  11. S. Jafari, H.A. Mahabady, H. Kazemian, Catal. Lett. 128, 57 (2009)

    Article  CAS  Google Scholar 

  12. J.N. Lin, J.H. Chen, C.Y. Hsiao, Y.M. Kang, B.Z. Wan, Appl. Catal. B 36, 19 (2002)

    Article  CAS  Google Scholar 

  13. J.H. Chen, J.N. Lin, Y.M. Kang, W.Y. Yu, C.N. Kuo, B.Z. Wan, Appl. Catal. A 291, 162 (2005)

    Article  CAS  Google Scholar 

  14. G. Li, D.I. Enache, J. Edwards, A.F. Carley, D.W. Knight, G.J. Hutchings, Catal. Lett. 110, 7 (2006)

    Article  CAS  Google Scholar 

  15. X. Zhang, X. Ke, H. Zhu, Chem. Eur. J. 18, 8048 (2012)

    Article  CAS  Google Scholar 

  16. B.Z. Zhan, M.A. White, M. Lumsden, J.M. Neuhaus, K.N. Robertson, T.S. Cameron, M. Gharghouri, Chem. Mater. 14, 3636 (2002)

    Article  CAS  Google Scholar 

  17. S.C. Larsen, J. Phys. Chem. C 111, 18464 (2007)

    Article  CAS  Google Scholar 

  18. J.C. Fierro-Gonzalez, Y. Hao, B.C. Gates, J. Phys. Chem. C 111, 6645 (2007)

    Article  CAS  Google Scholar 

  19. Y. Pang, H. Lei, Chem. Eng. J. 287, 585 (2016)

    Article  CAS  Google Scholar 

  20. X. Chen, M. Murugananthan, Y. Zhang, Chem. Eng. J. 283, 1357 (2016)

    Article  CAS  Google Scholar 

  21. R.S. Ribeiroa, A.M.T. Silvab, L.M. Pastrana-Martínezb, J.L. Figueiredob, H.T. Fariab, Catal. Today 249, 204 (2015)

    Article  Google Scholar 

  22. G. Mele, R.D. Sole, G. Vasapollo, E.G. López, L. Palmisano, M. Schiavello, J. Catal. 217, 334 (2003)

    Article  CAS  Google Scholar 

  23. G. Sudha, E. Subramanian, Int. Res. J. Nat. Appl. Sci. 2, 114 (2015)

    Google Scholar 

  24. J. Turkevich, P.C. Stevenson, J. Hiller, Discuss. Faraday Soc. 11, 55 (1951)

    Article  Google Scholar 

  25. K. Ojha, N.C. Pradhan, A.N. Samanta, Zeolite from fly ash: synthesis and characterization. Bull. Mater. Sci. 27, 555 (2004)

    Article  CAS  Google Scholar 

  26. P.T. Amaladhas, S.S. Thavamani, Adv. Mater. Lett. 4, 688 (2013)

    Article  CAS  Google Scholar 

  27. M.M.J. Treacy, J.B. Higgins, th revised Ed, Structure Commission of the International Zeolite Association, 4th revised edn. (Elsevier, New York, 2001)

    Google Scholar 

  28. S.B. Gajbhiye, Int. J. Mod. Eng. Res. 2, 1204 (2012)

    Google Scholar 

  29. L. Yang, S. Luo, Y. Li, Y. Xiao, Q. Kang, Q. Cai, Environ. Sci. Technol. 44, 7641 (2010)

    Article  CAS  Google Scholar 

  30. P. Chowdhury, J. Moreira, H. Gomaa, A.K. Ray, Ind. Eng. Chem. Res. 51, 4523 (2012)

    Article  CAS  Google Scholar 

  31. S. Lakshmi. M. Harshitha, G. Vaishali, S.R. Keerthana, R. Muthappa, Int. J. Sci. Eng. Technol. Res. 5, 2488 (2016)

    Google Scholar 

  32. Y. Tao, Z.L. Cheng, K.E. Ting, X.J. Yin, J. Catal. 2013, 1 (2013)

    Article  Google Scholar 

  33. D.T.T. Trinh, S.T.T. Le, D. Channei, W. Khanitchaidecha, A. Nakaruk, Int. J. Chem. Eng. Appl. 7, 273 (2016)

    CAS  Google Scholar 

  34. M.C. Labbé, W.A. Shewa, J.A. Lalman, S.R. Shanmugam, Water 6, 1785 (2014)

    Article  Google Scholar 

  35. E. Grabowska, J. Reszczy_nska, A. Zaleska, Water Res. 4, 5453 (2012)

    Article  Google Scholar 

  36. E. Rafiee, E. Noori, A.A. Zinatizadeh, H. Zanganeh, RSC Adv. (2016). https://doi.org/10.1039/C6RA09897E

    Google Scholar 

  37. N.H. Salah, M. Bouhelassa, S. Bekkouche, A. Boultif, Desalination 166, 347 (2004)

    Article  CAS  Google Scholar 

  38. A.R. Rahmani, M.T. Samadi, A.E. Moafagh, J. Res. Health Sci. 8, 55 (2008)

    CAS  Google Scholar 

  39. P. Chowdhury, J. Moreira, H. Gomaa, Ind. Eng. Chem. Res. 51, 4523 (2012)

    Article  CAS  Google Scholar 

  40. H. Ch, R. Chiou, S. Juang, J. Hazard. Mater. 1, 149 (2007)

    Google Scholar 

  41. M.A. Andrade, R.J. Carmon, A.S. Mestre, J. Matos, A.P. Carvalho, C.O. Ania, Carbon 76, 183 (2014)

    Article  CAS  Google Scholar 

  42. H.R. Pouretedal, A.M. Sohrabi, J. Iran Chem. Soc. 13, 73 (2016)

    Article  CAS  Google Scholar 

  43. T.C. Wang, N. Lu, J. Li, Y. Wu, Environ. Sci. Technol. 45, 9301 (2011)

    Article  CAS  Google Scholar 

  44. A. Bala Nambi, J.V. Anusha, E. Subramanian, J. Environ. Biotechnol. Res. 6, 157 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Subramanian.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIF 5456 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anusha, J.V., Nambi, A.B. & Subramanian, E. In Situ and Ex Situ Immobilization of Nano Gold Particles in Zeolite Framework and a Comparison of Their Photocatalytic Activities. J Inorg Organomet Polym 28, 15–26 (2018). https://doi.org/10.1007/s10904-017-0753-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-017-0753-z

Keywords

Navigation