Skip to main content
Log in

Solvent-free oxidation of benzyl alcohol with oxygen using zeolite-supported Au and Au–Pd catalysts

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The oxidation of benzyl alcohol to benzaldehyde has been investigated in the absence of solvent using zeolite-supported Au and Au–Pd catalysts. Three zeolites were investigated, ZSM-5, zeolite β and zeolite Y, and these were contrasted with the titanoslicalite TS-1 and TiO2 as supports. For the Au catalysts the best results are obtained with zeolite β as the support and the conversions were comparable or better than those observed with TiO2 in terms of turn over frequencies. However, the selectivities observed with the acidic zeolites were lower than the non-acidic TS-1 and TiO2. This is due to the subsequent reaction of benzaldehyde via acid catalysed reactions to give benzyl benzoate and its dibenzyl acetal, and, in some cases dibenzylether. Initial catalysts were evaluated with a gold loading of 2 wt% and increasing this to 4 wt% showed the expected increase in activity, indicating that there is scope to improve the performance of these catalysts. The most active catalysts were prepared by impregnation and catalysts prepared by deposition precipitation were considerably less active. Introduction of Pd into the catalyst improved the activity without significantly affecting the selectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.A. Sheldon J.K. Kochi (1981) Metal-Catalyzed Oxidations of Organic Compounds Academic Press New York

    Google Scholar 

  2. M. Beller and C. Bolm, Transition Metals for Organic Synthesis, 2nd ed., (Wiley-VCH, 2004)

  3. G. ten Brink I.W.C.E. Arends R.A. Sheldon (2000) Science 287 1636 Occurrence Handle1:CAS:528:DC%2BD3cXhs1Oqs7o%3D Occurrence Handle10.1126/science.287.5458.1636

    Article  CAS  Google Scholar 

  4. M. Vazylyev D. Sloboda-Rozner A. Haimov G. Maayan R. Neumann (2005) Topics Catal. 34 93 Occurrence Handle1:CAS:528:DC%2BD2MXjvFymsro%3D Occurrence Handle10.1007/s11244-005-3793-5

    Article  CAS  Google Scholar 

  5. M. Pagliaro S. Campestrini R. Ciriminna (2005) Chem. Soc. Rev. 34 837 Occurrence Handle1:CAS:528:DC%2BD2MXhtVWmurbM Occurrence Handle10.1039/b507094p

    Article  CAS  Google Scholar 

  6. K. Mori T. Hara T. Mizugaki K. Ebitani K. Kaneda (2004) J. Am. Chem. Soc. 26 10657 Occurrence Handle10.1021/ja0488683

    Article  Google Scholar 

  7. I.E. Markó P.R. Giles M. Tsukazaki S.M. Brown C.J. Urch (1996) Science 274 2044 Occurrence Handle10.1126/science.274.5295.2044

    Article  Google Scholar 

  8. M.J. Schultz R.S. Adler W. Zierkiewicz T. Privalov M.S. Sigman (2005) J. Am. Chem. Soc. 127 8499 Occurrence Handle1:CAS:528:DC%2BD2MXktlKjtLw%3D Occurrence Handle10.1021/ja050949r

    Article  CAS  Google Scholar 

  9. U.R. Pillai E. Sahle-Demessie (2003) Appl. Catal. A: Gen. 245 103 Occurrence Handle1:CAS:528:DC%2BD3sXjvVOitr8%3D Occurrence Handle10.1016/S0926-860X(02)00617-8

    Article  CAS  Google Scholar 

  10. M. Hudlicky (1990) Oxidations in Organic Chemistry ACS Washington DC

    Google Scholar 

  11. W.P. Griffith and J.M. Joliffe, in: Dioxygen Activation and Homogenuous Catalytic Oxidation, ed. L.L. Simandi (Elsevier, Amsterdam, 1991)

  12. G. Cainelli G. Cardillo (1984) Chromium Oxidants in Organic Chemistry Springer Berlin

    Google Scholar 

  13. D.G. Lee U.A. Spitzer (1970) J. Org. Chem. 35 3589 Occurrence Handle1:CAS:528:DyaE3cXlt1Shtrk%3D Occurrence Handle10.1021/jo00835a101

    Article  CAS  Google Scholar 

  14. F.M. Menger C. Lee (1981) Tetrahedron Lett. 22 1655 Occurrence Handle1:CAS:528:DyaL3MXltlahsbc%3D Occurrence Handle10.1016/S0040-4039(01)90402-2

    Article  CAS  Google Scholar 

  15. L. Prati M. Rossi (1998) J. Catal. 176 552 Occurrence Handle1:CAS:528:DyaK1cXjvFemsr0%3D Occurrence Handle10.1006/jcat.1998.2078

    Article  CAS  Google Scholar 

  16. F. Porta L. Prati M. Rossi G. Scari (2002) J. Catal. 211 464 Occurrence Handle1:CAS:528:DC%2BD38Xns12gtL0%3D

    CAS  Google Scholar 

  17. S. Carretin, P. McMorn, P. Johnston, K. Griffin and G.J. Hutchings, Chem. Commun. (2002) 696

  18. F. Porta L. Prati (2004) J. Catal. 224 397 Occurrence Handle1:CAS:528:DC%2BD2cXjvVGis7s%3D Occurrence Handle10.1016/j.jcat.2004.03.009

    Article  CAS  Google Scholar 

  19. P. Landon, P.J. Collier, A.J. Papworth, C.J. Kiely and G.J. Hutchings, Chem. Commun. (2002) 2058

  20. D.I. Enache D.W. Knight G.J. Hutchings (2005) Catal. Lett. 103 IssueID1–2 43 Occurrence Handle1:CAS:528:DC%2BD2MXpt1ags7s%3D Occurrence Handle10.1007/s10562-005-6501-y

    Article  CAS  Google Scholar 

  21. A. Abad P. Conception A. Corma H. Garcia (2005) Angew. Chemie 44 4066 Occurrence Handle1:CAS:528:DC%2BD2MXmtF2gsrc%3D Occurrence Handle10.1002/anie.200500382

    Article  CAS  Google Scholar 

  22. J. Guzman S. Carrettin J.C. Fierro-Gonzalez Y. Hao B.C. Gates A. Corma (2005) Angew. Chem. Int. Ed. 44 4778 Occurrence Handle1:CAS:528:DC%2BD2MXnvVSqtrs%3D Occurrence Handle10.1002/anie.200500659

    Article  CAS  Google Scholar 

  23. J. Guzman S. Carrettin A. Corma (2005) J. Am. Chem. Soc. 127 3286 Occurrence Handle1:CAS:528:DC%2BD2MXhtlCgtLo%3D Occurrence Handle10.1021/ja043752s

    Article  CAS  Google Scholar 

  24. P. Landon, P.J. Collier, A.J. Papworth, C.J. Kiely and G.J. Hutchings, Chem. Commun. (2002) 2058

  25. P. Landon P.J. Collier A.F. Carley D. Chadwick A.J. Papworth A. Burrows C.J. Kiely G.J. Hutchings (2003) Phys. Chem. Chem. Phys. 5 1917 Occurrence Handle1:CAS:528:DC%2BD3sXivFGksr4%3D Occurrence Handle10.1039/b211338b

    Article  CAS  Google Scholar 

  26. J.K. Edwards B. Solsona P. Landon A.F. Carley A. Herzing M. Watanabe C.J. Kiely G.J. Hutchings (2005) J. Mater. Chem. 15 4595 Occurrence Handle1:CAS:528:DC%2BD2MXhtFKqtrfK Occurrence Handle10.1039/b509542e

    Article  CAS  Google Scholar 

  27. J.K. Edwards B.E. Solsona P. Landon A.F. Carley A. Herzing C.J. Kiely G.J. Hutchings (2005) J. Catal. 236 69 Occurrence Handle1:CAS:528:DC%2BD2MXhtFKmur%2FM Occurrence Handle10.1016/j.jcat.2005.09.015

    Article  CAS  Google Scholar 

  28. D.I. Enache J.K. Edwards P. Landon B. Solsona-Espriu A.F. Carley A.A. Herzing M.I. Watanabe C.J. Kiely D.W. Knight G.J. Hutchings (2006) Science 311 362 Occurrence Handle1:CAS:528:DC%2BD28XlvFSgsA%3D%3D Occurrence Handle10.1126/science.1120560

    Article  CAS  Google Scholar 

  29. M. Tarramasso, G. Perego and B. Notari, US Patent, 1983, 4410501

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graham J. Hutchings.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, G., Enache, D.I., Edwards, J. et al. Solvent-free oxidation of benzyl alcohol with oxygen using zeolite-supported Au and Au–Pd catalysts. Catal Lett 110, 7–13 (2006). https://doi.org/10.1007/s10562-006-0083-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-006-0083-1

Keywords

Navigation