Skip to main content
Log in

Defluoridation of Water by Graphene Oxide Supported Needle-Like Complex Adsorbents

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The dicarboxylic acids like oxalic acid, malonic acid and succinic acid mediated graphene oxide–zirconium needle like complexes were synthesized and used to remove fluoride from simulated fluoride contaminated water. The adsorption of fluoride by dicarboxylic acids mediated graphene oxide–zirconium complexes were by both electrostatic interaction at acidic pH and ion-exchange mechanism at neutral pH. The maximum defluoridation capacity observed was 9.70 mg/g at the minimum contact time of 18 min at room temperature. Various batch equilibrium parameters like pH studies, contact time, common ion interference and temperature studies were optimized. The synthesized graphene oxide and graphene oxide supported complexes were characterized using UV–vis, FTIR, XRD and SEM with EDAX analysis to establish the mechanism of fluoride adsorption. The removal of fluoride was described by the pseudo-second-order reaction kinetics, Freundlich isotherm model and thermodynamic studies which indicates the nature of adsorption was endothermic and spontaneous. Regeneration studies depict that the dicarboxylic acid mediated graphene oxide–zirconium complex can be used as an effective adsorbent for the removal of fluoride ions from wastewater. Also, the field applicability of the material has been verified with field samples collected from nearby fluoride endemic villages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. World Health Organization, Guidelines for drinking-water quality: third edition incorporating the first and second addenda (World Health Organization, Geneva, 2008)

    Google Scholar 

  2. G. Saha, S.M. Maliyekkal, P.C. Sabumon, T. Pradeep, A low cost approach to synthesize sand like AlOOH nanoarchitecture (SANA) and its application in defluoridation of water. J. Environ. Chem. Eng. 2, 1303–1311 (2015)

    Article  Google Scholar 

  3. N. Sankararamakrishnan, N. Singh, A. Gupta, One pot green synthetic route for the preparation of cetyl trimethyl ammonium bromide grafted multiwalled carbon nanotubes and its application towards defluoridation. RSC Adv. 3, 22421–22429 (2013)

    Article  CAS  Google Scholar 

  4. N. Thakur, S.A. Kumar, H. Parab, A.K. Pandey, P. Bhatt, S.D. Kumar, A.V.R. Reddy, A fluoride ion selective Zr(IV)-poly(acrylamide) magnetic composite. RSC Adv. 4, 10350–10357 (2014)

    Article  CAS  Google Scholar 

  5. S.M. Prabhu, S. Meenakshi, Enriched fluoride sorption using chitosan supported, mixed metal oxides beads: synthesis, characterization and mechanism. J. Water Process Eng. 2, 96–104 (2014)

    Article  Google Scholar 

  6. C.S. Sundaram, S. Meenakshi, Fluoride sorption using organic–inorganic hybrid type ion exchangers. J. Colloid Interface Sci. 333, 58–62 (2009)

    Article  Google Scholar 

  7. D. Li, M.B. Müller, S. Gilje, R.B. Kaner, G.G. Wallace, Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 3, 101–105 (2015)

    Article  Google Scholar 

  8. S. Park, J. An, I. Jung, R.D. Piner, S.J. An, X. Li, A. Velamakanni, R.S. Ruoff, Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents. Nano Lett. 9, 1593–1597 (2009)

    Article  CAS  Google Scholar 

  9. M. Barathi, A.S.K. Kumar, C.U. Kumar, N. Rajesh, graphene oxide–aluminium oxyhydroxide interaction and its application for the effective adsorption of fluoride. RSC Adv. 4, 53711–55372 (2014)

    Article  CAS  Google Scholar 

  10. L.H. Velazquez-Jimenez, R.H. Hurt, J. Matos, J.R. Rangel-Mendez, Zirconium-carbon hybrid sorbent for removal of fluoride from water: oxalic acid mediated zr(iv) assembly and adsorption mechanism. Environ. Sci. Technol. 48, 1166–1174 (2014)

    Article  CAS  Google Scholar 

  11. D. Yang, Y. Li, Y. Wang, Z. Jiang, Bioinspired synthesis of mesoporous ZrO2 nanomaterials with elevated defluoridation performance in agarose gels. RSC Adv. 4, 49811–49818 (2014)

    Article  CAS  Google Scholar 

  12. M. Barathi, A.S.K. Kumar, N. Rajesh, A novel ultrasonication method in the preparation of zirconium impregnated cellulose for effective fluoride adsorption. Ultrasonics Sonochem. 21, 1090–1099 (2014)

    Article  CAS  Google Scholar 

  13. S.M. Prabhu, S. Meenakshi, Synthesis of metal ion loaded silica gel/chitosan biocomposite and its fluoride uptake studies from water. J. Water Process Eng. 3, 144–150 (2014)

    Article  Google Scholar 

  14. N. Viswanathan, S. Meenakshi, Synthesis of Zr(IV) entrapped chitosan polymeric matrix for selective fluoride sorption. Colloids Surf B 72, 88–93 (2009)

    Article  CAS  Google Scholar 

  15. A. Ghosh, S. Chakrabarti, K. Biswas1, U.C. Ghosh, Agglomerated nanoparticles of hydrous Ce(IV) + Zr(IV) mixed oxide: preparation, characterization and physicochemical aspects on fluoride adsorption. Appl. Surf. Sci. 307, 665–676 (2014)

    Article  CAS  Google Scholar 

  16. S.M. Prabhu, S. Meenakshi, Chemistry of defluoridation by one-pot synthesized dicarboxylic acids mediated polyacrylamide—zirconium complex. Chem. Eng. J. 262, 224–234 (2015)

    Article  Google Scholar 

  17. R. Thirunakaran, K.T. Kim, Y.M. Kang, J. Young-Lee, Cr3+ modified LiMn2O4 spinel intercalation cathodes through oxalic acid assisted sol-gel method for lithium rechargeable batteries. Mater. Res. Bull. 40, 177–186 (2005)

    Article  CAS  Google Scholar 

  18. A. Ghosh, M.A. Ali, Studies on physicochemical characteristics of chitosan derivatives with dicarboxylic acids. J. Mater. Sci. 47, 1196–1204 (2012)

    Article  CAS  Google Scholar 

  19. N. Pan, D.B. Guan, T. He, R.B. Wang, I. Wyman, Y.D. Jin, C.Q. Xia, Removal of Th4+ ions from aqueous solutions by graphene oxide. J. Radioanal. Nucl. Chem. 298, 1999–2008 (2013)

    Article  CAS  Google Scholar 

  20. S.M. Prabhu, S. Meenakshi, Novel one-pot synthesis of dicarboxylic acids mediated alginate-zirconium biopolymeric complex for defluoridation of water. Carbohydr. Polym. 120, 60–68 (2015)

    Article  CAS  Google Scholar 

  21. Z.H. Cheng, A. Yasukawa, K. Kandori, T. Ishikawa, FTIR Study on incorporation of CO2 into calcium hydroxyapatite. J. Chem. Soc. 94, 1501–1505 (1998)

    Google Scholar 

  22. S.M. Prabhu, S. Meenakshi, A dendrimer-like hyper branched chitosan beads toward fluoride adsorption from water. Int. J. Biol. Macromol. 78, 280–286 (2015)

    Article  CAS  Google Scholar 

  23. M. Koji, M. Ohgai, Formation mechanism of hydrous zirconia particles produced by the hydrolysis of ZrOCl2 solutions: III, kinetics study for the nucleation and crystal-growth processes of primary particlesJ. Am. Ceram. Soc. 84, 2303–2312 (2001)

    Google Scholar 

  24. R. Atchudan, S. Perumal, T.N.J.I. Edison, Y.R. Lee, Facile synthesis of monodisperse hollow carbon nanospheres using sucrose by carbonization route. Mater. Letters 166, 145–149 (2016)

    Article  CAS  Google Scholar 

  25. R. Atchudan, S. Perumal, T.N.J.I. Edison, Y.R. Lee, Highly graphitic carbon nanosheets synthesized over tailored mesoporous molecular sieves using acetylene by chemical vapor deposition method. RSC Adv. 5, 93364–93373 (2015)

    Article  CAS  Google Scholar 

  26. H.M.F. Freundlich, Uber die adsorption in lösungen. Z. Phys. Chem. 57A, 385–470 (1906)

    Google Scholar 

  27. I. Langmuir, The constitution and fundamental properties of solids and liquids. J. Am. Chem. Soc. 38, 2221–2295 (1916)

    Article  CAS  Google Scholar 

  28. M.M. Dubinin, L.V. Radushkevich, Equation of the characteristic curve of activated charcoal. Chem. Zent. 1, 875–889 (1947)

    Google Scholar 

  29. S. Meenakshi, N. Viswanathan, Identification of selective ion-exchange resin for fluoride sorption. J. Colloid Interface Sci. 308, 438–450 (2007)

    Article  CAS  Google Scholar 

  30. Y.S. Ho, W.T. Chiu, C.C. Wang, Regression analysis for the sorption isotherms of basic dyes on sugarcane dust. Bioresour Technol. 96, 1285–1291 (2005)

    Article  CAS  Google Scholar 

  31. S. Lagergren, Zur theorie der sogenannten adsorption gelöster stoffe. K. Sven. Vetenskapsakad. Handlingar 24, 1–39 (1898)

    Google Scholar 

  32. Y.S. Ho, Second order kinetic model for the sorption of cadmium onto tree fern: comparison of linear and non-linear methods. Water Res. 40, 119–125 (2006)

    Article  CAS  Google Scholar 

  33. P. Ganesan, J. Lakshmi, G. Sozhan, S. Vasudevan, Removal of manganese from water by electrocoagulation: adsorption, kinetics and thermodynamic studies. Can. J. Chem. Eng. 91, 448–458 (2013)

    Article  CAS  Google Scholar 

  34. S. Vasudevan, J. Lakshmi, G. Sozhan, Electrochemically assisted coagulation for the removal of boron from water using zinc anode. Desalination 310, 122–129 (2013)

    Article  CAS  Google Scholar 

  35. W.J. Weber, J.C. Morris, Equilibria and capacities for adsorption on carbon. J. Sanit. Eng. Div. 90, 79–91 (1964)

    CAS  Google Scholar 

  36. D. Wankasi, M. Horsfall, A.I. Spiff, Retention of Pb(II) ion from aqueous solution by nipah palm (nypa fruticans wurmb) petiole biomass. J. Chil. Chem. Soc. 50, 691–696 (2005)

    Article  CAS  Google Scholar 

  37. V.S. Chauhan, P.K. Dwivedi, L. Iyengar, Investigations on activated alumina based domestic defluoridation units. J. Hazard. Mater. 139, 103–107 (2007)

    Article  CAS  Google Scholar 

  38. M. Ansari, M. Kazemipour, M. Dehghani, M. Kazemipour, The defluoridation of drinking water using multi-walled carbon nanotubes. J. Fluor. Chem. 132, 516–520 (2011)

    Article  CAS  Google Scholar 

  39. C.S. Sundaram, N. Viswanathan, S. Meenakshi, Fluoride sorption by nano-hydroxyapatite/chitin composite. J. Hazard. Mater. 172, 147–151 (2009)

    Article  Google Scholar 

  40. X. Yu, S. Tong, M. Ge, J. Zuo, Removal of fluoride from drinking water by cellulose@ hydroxyapatite nanocomposites. Carbohydr. Polym. 92, 269–275 (2013)

    Article  CAS  Google Scholar 

  41. D. Mehta, P. Mondal, S. George, Utilization of marble waste powder as a novel adsorbent for removal of fluoride ions from aqueous solution. J. Environ. Chem. Eng. 4, 932–942 (2016)

    Article  CAS  Google Scholar 

  42. K. Pandi, N. Viswanathan, In situ precipitation of nano-hydroxyapatite in gelatin polymatrix towards specific fluoride sorption. Int. J. Biol. Macromol. 74, 351–359 (2015)

    Article  CAS  Google Scholar 

  43. K. Pandi, N. Viswanathan, In situ fabrication of magnetic iron oxide over nano-hydroxyapatite gelatin eco-polymeric composite for defluoridation studies. J. Chem. Eng. Data 61, 571–578 (2016)

    Article  CAS  Google Scholar 

  44. A.L. Srivastav, P.K. Singh, V. Srivastava, Y.C. Sharma, Application of a new adsorbent for fluoride removal from aqueous solutions. J. Hazard. Mater. 263, 342–352 (2013)

    Article  CAS  Google Scholar 

  45. S.M. Prabhu, S. Meenakshi, Defluoridation of water using dicarboxylic acids mediated chitosan-polyaniline/zirconium biopolymeric complex. Int. J. Biol. Macromol. 85, 16–22 (2016)

    Article  Google Scholar 

Download references

Acknowledgments

The authors, SSDE, and SM likes to thank University Grants Commission-Research Fellowship in Sciences for Meritorious Students (UGC-RFSMS), New Delhi, India for providing financial support to carry out this research work. SMP and GL were supported by Korea Ministry of Environment (MOE) as “K-COSEM Research Programs”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sankaran Meenakshi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prabhu, S.M., Elanchezhiyan, S.S., Lee, G. et al. Defluoridation of Water by Graphene Oxide Supported Needle-Like Complex Adsorbents. J Inorg Organomet Polym 26, 834–844 (2016). https://doi.org/10.1007/s10904-016-0372-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-016-0372-0

Keywords

Navigation