Skip to main content
Log in

Effect of the Template on the Textural Properties of the Macrospherical Trimodal Metallosilicate Materials

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Trimodal porous tetrametallosilicate macrospheres were synthesized by incorporation of metallic ions (Ce, Al, Zr and Zn) within the silica framework using a mono or multi templating method. In this work the chitosan played a dual role (pore and shape generating agent), while the other biomaterials including starch, gelatine, alginate, glucose, agar and yeast cells were used as pore generators. The samples were characterized by the Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray dispersive energy, X-ray diffraction and water sorption techniques. The specific surface areas, pore volumes and mean pore diameters determined from water sorption isotherms vary depending on the nature of the template. The hierarchical distribution of the pore sizes confirmed by the SEM analyses and the adsorption data is caused on the one hand by the structural differences between the materials used as templates and on the other hand by the high number of heteroatoms incorporated within the inorganic framework. The FTIR studies showed that Ce, Al, Zr and Zn ions were incorporated within the silica framework. Wide angle XRD patterns demonstrated that all the metallosilicate samples have an amorphous structure. The obtained hierarchical materials exhibit good mechanical, thermical and chemical stability. Due to their size and hardness they can be easily handled, recovered and reused. These new materials are highly demanded for the development of advanced materials with applications in adsorption, separation, catalysis and electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. D.W. Breck, Zeolite molecular sieves, structure, chemistry and use (Wiley, New York, 1974), pp. 771–772

    Google Scholar 

  2. F. Schuth, Angew. Chem. Int. Ed. 42, 3604 (2003)

    Article  Google Scholar 

  3. K. Na, M. Choi, R. Ryoo, Micropor. Mesopor. Mater. 166, 3 (2013)

    Article  CAS  Google Scholar 

  4. N. Pal, A. Bhaumik, Adv. Colloid Interface Sci. 189, 21 (2013)

    Article  Google Scholar 

  5. X.Y. Yang, Y. Li, A. Lemaire, J.G. Yu, B.L. Su, Pure Appl. Chem. 81(12), 2265 (2009)

    Article  CAS  Google Scholar 

  6. Y. Tao, H. Kanoh, L. Abrams, K. Kaneko, Chem. Rev. 106, 896 (2006)

    Article  CAS  Google Scholar 

  7. X. Li, M. Sun, J.C. Rooke, L. Chen, B.L. Su, Chinese. J. Catal. 34(1), 22 (2013)

    Google Scholar 

  8. S. Lopez-Orozco, A. Inayat, A. Schwab, T. Selvam, W. Schwieger, Adv. Mater. 23, 2602 (2011)

    Article  CAS  Google Scholar 

  9. K. Egeblad, C.H. Christensen, M. Kustova, Chem. Mater. 20(3), 946 (2008)

    Article  CAS  Google Scholar 

  10. M.S. Holm, E. Taarning, K. Egeblad, C.H. Christensen, Catal. Today 168(1), 3 (2011)

    Article  CAS  Google Scholar 

  11. C.C. Freyhardt, M. Tsapatsis, R.F. Lobo, K.J. Balkus, M.E. Davis, Nature 381(6580), 295 (1996)

    Article  CAS  Google Scholar 

  12. A. Corma, M.J. Diaz-Cabanas, J.L. Jorda, C. Martinez, M. Moliner, Nature 443(7113), 842 (2006)

    Article  CAS  Google Scholar 

  13. J.L. Sun, C. Bonneau, A. Cantin, A. Corma, M.J. Diaz Cabanas, M. Moliner, D.L. Zhang, M.R. Li, X.D. Zou, Nature 458(7242), 1154 (2009)

    Article  CAS  Google Scholar 

  14. J.X. Jiang, J.L. Jorda, J.H. Yu, L.A. Baumes, E. Mugnaioli, M.J. Diaz Cabanas, U. Kolb, A. Corma, Science 333(6046), 1131 (2011)

    Article  CAS  Google Scholar 

  15. C.J.H. Jacobsen, C. Madsen, J. Houzvicka, I. Schmidt, A. Carlsson, J. Am. Chem. Soc. 122(29), 7116 (2000)

    Article  CAS  Google Scholar 

  16. A.H. Jansen, I. Schmidt, C.J.H. Jacobsen, A.J. Koster, K.P. de Jong, Micropor. Mesopor. Mater. 65(1), 59 (2003)

    Article  Google Scholar 

  17. I. Schmidt, A. Boisen, E. Gustavsson, K. Sthl, S. Pehrson, S. Dahl, A. Carlsson, C.J.H. Jacobsen, Chem. Mater. 13(12), 4416 (2001)

    Article  CAS  Google Scholar 

  18. Z.X. Yang, Y.D. Xia, R. Mokaya, Adv. Mater. 16(8), 727 (2004)

    Article  CAS  Google Scholar 

  19. K. Zhu, K. Egeblad, C.H. Christensen, Eur. J. Inorg. Chem. 2007(25), 3955 (2007)

    Article  Google Scholar 

  20. Y.S. Tao, H. Kanoh, K. Kaneko, J. Am. Chem. Soc. 125(20), 6044 (2003)

    Article  CAS  Google Scholar 

  21. M. Kustova, K. Egeblad, K. Zhu, C.H. Christensen, Chem. Mater. 19(12), 2915 (2007)

    Article  CAS  Google Scholar 

  22. K.H. Rhodes, S.A. Davis, F. Caruso, B. Zhang, S. Mann, Chem. Mater. 12, 2832 (2000)

    Article  CAS  Google Scholar 

  23. H. Zhang, G.C. Hardy, M.J. Rosseinsky, A.I. Cooper, Adv. Mater. 15, 78 (2003)

    Article  CAS  Google Scholar 

  24. S. Abramson, C. Meiller, P. Beaunier, V. Dupuis, L. Perrigaud, A. Bee, V. Cabuil, J. Mater. Chem. 20, 4916 (2010)

    Article  CAS  Google Scholar 

  25. L. Tosheva, B. Mihailova, V. Valtchev, J. Sterte, Micropor. Mesopor. Mater. 48, 31 (2001)

    Article  CAS  Google Scholar 

  26. M. Towata, M. Sivakumar, K. Yasui, T. Tuziuti, T. Kozuka, K. Ohta, Y. Iida, J. Surf. Sci. Nanotechn. 3, 405 (2005). Conference-ISSS-4

    Article  CAS  Google Scholar 

  27. A. Dong, Y. Wang, Y. Tang, Y. Zhang, N. Ren, Y. Yue, Z. Gao, Adv. Mater. 14, 1506 (2002)

    Article  CAS  Google Scholar 

  28. J. Hedlund, M. Noack, P. Kolsch, D. Creaser, J. Caro, J. Sterte, J. Membr. Sci. 159(1–2), 263 (1999)

    Article  CAS  Google Scholar 

  29. H. Zhu, Z. Liu, Y. Wang, D. Kong, X. Yuan, Z. Xie, Chem. Mater. 20(3), 1134 (2008)

    Article  CAS  Google Scholar 

  30. Y. Wang, Y. Tang, A. Dong, X. Wang, N. Ren, W. Shan, Z. Gao, Adv. Mater. 14, 994 (2002)

    Article  CAS  Google Scholar 

  31. W.C. Li, A.H. Lu, R. Palkovitz, W. Schmidt, B. Spliethoff, F. Schuth, J. Am. Chem. Soc. 127, 12595 (2005)

    Article  CAS  Google Scholar 

  32. Dong, Y. Wang, Y. Tang, N. Ren, Y. Zhang, Y. Yue, Z. Gao, Adv. Mater. 14(12), 926 (2002)

    Article  CAS  Google Scholar 

  33. M.W. Anderson, S.M. Holmes, N. Hanif, C.S. Cundy, Angew. Chem. Int. Ed. 39(15), 2707 (2000)

    Article  CAS  Google Scholar 

  34. B. Zhang, S.A. Davis, N.H. Mendelson, S. Mann, Chem. Commun. 9, 781 (2000)

    Article  Google Scholar 

  35. H. Zhou, T. Fan, X. Li, J. Ding, D. Zhang, X. Li, Y. Gao, Eur. J. Inorg. Chem. 2, 211 (2009)

    Article  Google Scholar 

  36. B. Zhang, S.A. Davis, S. Mann, Chem. Mater. 14(3), 1369 (2002)

    Article  CAS  Google Scholar 

  37. D. Walsh, A. Kulak, K. Aoki, T. Ikoma, J. Tanaka, S. Mann, Angew. Chem. Int. Ed. 43, 6691 (2004)

    Article  CAS  Google Scholar 

  38. L.C. Boudreau, J.A. Kuck, M. Tsaparsis, J. Membr. Sci. 152, 41 (1999)

    Article  CAS  Google Scholar 

  39. D.G. Shchukin, A. Yaremchenko, M. Ferreira, V. Kharton, Chem. Mater. 17(20), 5124 (2005)

    Article  CAS  Google Scholar 

  40. F.S. Xiao, L. Wang, C. Yin, K. Lin, Y. Di, J. Li, R. Xu, D.S. Su, R. Schlogl, T. Yokoi, T. Tatsumi, Angew. Chem. Int. Ed. 45, 3090 (2006)

    Article  CAS  Google Scholar 

  41. H. Wang, T.J. Pinnavaia, Angew. Chem. Int. Ed. 45, 7603 (2006)

    Article  CAS  Google Scholar 

  42. A. Imhof, D.J. Pine, Nature 389, 948 (1997)

    Article  CAS  Google Scholar 

  43. R. Srivastava, M. Choi, R. Ryoo, Chem. Commun. 43, 4489 (2006)

    Article  Google Scholar 

  44. M. Smarsly, M. Antonietti, Eur. J. Inorg. Chem. 6, 1111 (2006)

    Article  Google Scholar 

  45. M. Choi, K. Na, J. Kim, Y. Sakamoto, O. Terasaki, R. Ryoo, Nature 461, 246 (2009)

    Article  CAS  Google Scholar 

  46. K. Na, M. Choi, W. Park, Y. Sakamoto, O. Terasaki, R. Ryoo, J. Am. Chem. Soc. 132(12), 4169 (2010)

    Article  CAS  Google Scholar 

  47. S. Lowell, J.E. Shields, M.A. Thomas, M. Thommes, Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density, vol. 16 (Springer, Kluwer Academic Publishers, New York, 2004), pp. 327–330. ISBN 978-1-4020-2302-6

    Google Scholar 

  48. R.S. Mikhail, S. Brunauer, E.E. Bodor, J. Colloid Interface Sci. 26, 45 (1968)

    Article  CAS  Google Scholar 

  49. J. Hagymassy Jr, S. Brunauer, R.S. Mikhail, J. Colloid Interface Sci. 29(3), 485 (1969)

    Article  CAS  Google Scholar 

  50. J. Rouquerol, D. Avnir, C.W. Fairbridge, D.H. Everett, J.H. Haynes, N. Pernicone, J.D.F. Ramsay, K.S.W. Sing, K.K. Unger, Pure Appl. Chem. 66(8), 1739 (1994)

    Article  CAS  Google Scholar 

  51. J.H. de Boer, B.G. Linsen, T.V. Plas, G.J. Zondervan, J. Catal. 4, 649 (1965)

    Article  Google Scholar 

  52. J. Strunk, W.C. Vining, A.T. Bell, J. Phys. Chem. 115, 4114 (2011)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emil Ioan Muresan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muresan, E.I., Cimpoesu, N., Bargan, A. et al. Effect of the Template on the Textural Properties of the Macrospherical Trimodal Metallosilicate Materials. J Inorg Organomet Polym 25, 1060–1068 (2015). https://doi.org/10.1007/s10904-015-0212-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-015-0212-7

Keywords

Navigation