Skip to main content

Advertisement

Log in

Antibacterial Activity Evaluation of Silver Nanoparticles Entrapped in Silica Matrix Functionalized with Antibiotics

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

This study reports the synthesis of silver nanoparticles (Ag NPs) by the sodium borohydride reduction method and their embedding in a silica shell functionalized with several antibiotics (ampicillin, penicillin G and isoniazide). The characterization of the novel materials was made by UV–visible absorption spectroscopy, transmission electron microscopy (TEM), Fourier transform infrared spectroscopy, dynamic light scattering and thermal analysis. TEM micrographs revealed the formation of spherical nanoparticles with size ranging between 20 and 50 nm. The Ag NPs embedded in the silica network exhibited a good antimicrobial efficiency, comparable or even superior to that of antibiotic-containing formulations. This is the first report regarding the synergic antimicrobial effect of Ag NPs embedded in silica and ampicillin, both against planktonic cells and biofilms formed by P. aeruginosa and S. aureus, two of the most fearful resistant bugs. These results are demonstrating the great potential of these nanocomposites to be used in developing novel antimicrobial agents or improving the existent ones, by increasing their efficiency, extending their spectrum of activity and decreasing the probability to select resistance, by simultaneously targeting multiple targets in the microbial cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. P. Mohanpuria, J. Nanopart. Res. 10, 507 (2008)

    Article  CAS  Google Scholar 

  2. N. Duran, P.L. Marcato, O.L. Alves, G.I. De Souza, J. Nanobiotechnol. 3(8), 1 (2005)

    Google Scholar 

  3. R.E. Burrell, J.P. Heggers, G.J. Davis, J.B. Wright, Wounds 11, 64 (1999)

    Google Scholar 

  4. S. Thomas, P. McCubbin, J. Wound Care 12, 101 (2003)

    Article  CAS  Google Scholar 

  5. M. Bellantone, N.J. Coleman, L.L. Hench, J. Biomed. Mater. Res. 51, 484 (2000)

    Article  CAS  Google Scholar 

  6. A.G. Gristina, Science 237, 1588 (1987)

    Article  CAS  Google Scholar 

  7. S.L. Percival, P.G. Bowler, D. Russel, J. Hosp. Infect. 60, 1 (2005)

    Article  CAS  Google Scholar 

  8. T. Yuranova, A.G. Rincon, A. Bozzi, S. Parra, J. Photochem. Photobiol. A 161, 27 (2003)

    Article  CAS  Google Scholar 

  9. S. Gurunathan, J.W. Han, D.N. Kwon, J.H. Kim, Nanoscale Res. Lett. 9(1), 373 (2014)

    Article  Google Scholar 

  10. Q.L. Feng, J. Wu, G.Q. Chen, F.Z. Cui, T.N. Kim, J.O. Kim, J. Biomed. Mater. Res. 52, 662 (2000)

    Article  CAS  Google Scholar 

  11. B. Thati, A. Noble, R. Rowan, B.S. Creaven, M. Walsh, M. McCann, D. Egan, K. Kavanagh, Toxicol. In Vitro 21(5), 801 (2007)

    Article  CAS  Google Scholar 

  12. C.M. Betbeze, C.C. Wu, S.G. Krohne, J. Stiles, Am. J. Vet. Res. 67, 1788 (2006)

    Article  CAS  Google Scholar 

  13. C. Dowsett, Nurs. Stand. 19, 56 (2004)

    Article  Google Scholar 

  14. S.R. Norrby, C.E. Nord, R. Finch, Lancet Infect. Dis. 5, 115 (2005)

    Article  Google Scholar 

  15. S. Pal, Y. Kyung, S. Myong, J. Appl. Environ. Microbiol. 73, 1712 (2007)

    Article  CAS  Google Scholar 

  16. F.C. Tenover, Clin. Microbiol. Newslett. 27, 35 (2005)

    Article  Google Scholar 

  17. S.V. Kyriacou, W.J. Brownlow, X.H. Xu, Biochemistry 43, 140 (2004)

    Article  CAS  Google Scholar 

  18. G.R. Salunke, S. Ghosh, R.J. Santosh Kumar, S. Khade, P. Vashisth, T. Kale, S. Chopade, V. Pruthi, G. Kundu, J.R. Bellare, B.A. Chopade, Int. J Nanomed. 9, 2635 (2014)

    Google Scholar 

  19. M.G. Guzman, J. Dille, S. Godet, World Acad. Sci. Eng. Technol. 43, 357 (2008)

    Google Scholar 

  20. M.V. Roldan, A.L. Frattini, O.A. Sanctis, N.S. Pellegrini, Anal. AFA 17, 212 (2005)

    Google Scholar 

  21. H. Yin, T. Yamamoto, Y. Wada, S. Yanagida, Mater. Chem. Phys. 83, 66 (2004)

    Article  CAS  Google Scholar 

  22. Z. Zhu, L. Kai, Y. Wang, Mater. Chem. Phys. 96, 447 (2006)

    Article  CAS  Google Scholar 

  23. A.S. Edelstein, R.C. Cammarata, Nanomaterials: Synthesis, Properties and Applications (Bristol and Philadelphia Publishers, Bristol, 1996)

    Book  Google Scholar 

  24. M. Maillard, S. Giorgo, M.P. Pileni, Silver nanodisks. Adv. Mater. 14(5), 1084 (2002)

    Article  CAS  Google Scholar 

  25. J.J. Mock, M. Barbic, D.R. Smith, D.A. Schultz, S. Schultz, J. Chem. Phys. 116, 6755 (2002)

    Article  CAS  Google Scholar 

  26. D. Bhattacharyya, S. Singh, N. Satnalika, A. Khandelwal, S.H. Jeon, Nanotechnology 2, 29 (2009)

    Google Scholar 

  27. A.R. Shahverdi, A. Fakhimi, H.R. Shahverdi, M.S. Minaian, Nanomedicine 3, 168 (2007)

    Article  CAS  Google Scholar 

  28. Y.L. Wang, Y.Z. Wan, X.H. Dong, G.X. Cheng, H.M. Tao, T.Y. Wen, Carbon 36, 1567 (1998)

    Article  CAS  Google Scholar 

  29. N. Ichinose, Y. Ozaki, S. Kashu, Superfine Particle Technology (Springer, New York, 1992)

    Book  Google Scholar 

  30. O. Akhavan, E. Ghaderi, Sci. Technol. Adv. Mater. 10, 015003 (2009)

    Article  Google Scholar 

  31. H.J. Lee, S.Y. Yeo, S.H. Jeong, J. Mater. Sci. 38, 2199 (2003)

    Article  CAS  Google Scholar 

  32. C.N. Lok, C.M. Ho, R. Chen, Q.Y. He, W.Y. Yu, H. Sun, P.K.H. Tam, J.F. Chiu, C.M. Che, J. Proteome Res. 5, 916 (2006)

    Article  CAS  Google Scholar 

  33. J.R. Morones, J.L. Elechiguerra, A. Camacho, K. Holt, J.B. Kouri, J.T. Ramirez, M.J. Yacaman, J. Nanotechnol. 16, 2346 (2005)

    Article  CAS  Google Scholar 

  34. D.E. Mihaiescu, A.M. Grumezescu, E. Andronescu, G. Voicu, A. Ficai, O.R. Vasile, C. Bleotu, C. Saviuc, Curr. Org. Chem. 17(2), 105 (2013)

    Article  CAS  Google Scholar 

  35. T. Maneerung, S. Tokura, R. Rujiravanit, Carbohydr. Polym. 72, 43 (2008)

    Article  CAS  Google Scholar 

  36. T. Toshikazu, Inorg. Mater. 6, 505 (1999)

    Google Scholar 

  37. S. Zhang, R. Fu, D. Wu, W. Xu, Q. Ye, Z. Chen, Carbon 42, 3209 (2004)

    Article  CAS  Google Scholar 

  38. Y.Z. Wan, Y.L. Wang, G.X. Cheng, H.L. Luo, X.H. Dong, Carbon 39, 1607 (2001)

    Article  CAS  Google Scholar 

  39. K. Xu, J.X. Wang, X.L. Kang, J.F. Chen, Mater. Lett. 63, 31 (2009)

    Article  CAS  Google Scholar 

  40. A.M. Grumezescu, E. Andronescu, G. Voicu, K.S. Huang, C.H. Yang, A. Ficai, B.S. Vasile, V. Grumezescu, C. Bleotu, M.C. Chifiriuc, Int. J. Pharm. 463, 170 (2014)

    Article  CAS  Google Scholar 

  41. G. Voicu, V. Grumezescu, E. Andronescu, A.M. Grumezescu, A. Ficai, C.D. Ghitulica, I. Gheorghe, M.C. Chifiriuc, Int. J. Pharm. 446, 63 (2013)

    Article  CAS  Google Scholar 

  42. H.W. Boucher, G.H. Talbot, J.S. Bradley et al., Clin. Infect. Dis. 48, 1 (2009)

    Article  Google Scholar 

  43. M. Tudose, C. Munteanu, G. Marinescu, D. Culita, P. Ionita, Dig. J. Nanomater. Biostruct. 8(4), 1761 (2013)

    Google Scholar 

  44. C. Limban, L. Marutescu, M.C. Chifiriuc, Molecules 16, 7593 (2011)

    Article  CAS  Google Scholar 

  45. I.D. Vlaicu, R. Olar, D. Marinescu, V. Lazar, M. Badea, J. Therm. Anal. Calorim. 113, 1337 (2013)

    Article  CAS  Google Scholar 

  46. L.M. Liz-Marzan, M. Giersig, P. Mulvaney, Langmuir 12, 4329 (1996)

    Article  CAS  Google Scholar 

  47. D.C. Culita, L. Patron, O. Oprea, C. Bartha, P. Palade, V. Teodorescu, G. Filoti, J. Nanopart. Res. 15, 1916 (2013)

    Article  Google Scholar 

  48. A.T. Balaban, M. Banciu, I. Pogany, Applications of the Physical Methods in the Organic Chemistry (Ed. Stiintifica si Enciclopedica, Bucuresti, 1983)

  49. L.B. Rice, J. Infect. Dis. 197, 1079 (2009)

    Article  Google Scholar 

  50. H.W. Boucher, G.R. Corey, Clin. Infect. Dis. 46(5), 344 (2008)

    Article  Google Scholar 

  51. C.N. Lok, C.M. Ho, R. Chen, Q.Y. He, W.Y. Yu, H. Sun, P.K. Tam, J.F. Chiu, C.M. Che, J. Biol. Inorg. Chem. 9, 527 (2007)

    Article  Google Scholar 

  52. J.R. Morones-Ramirez, J.A. Winkler, C.S. Spina, J.J. Collins, Sci. Transl. Med. 5, 190 (2013)

    Article  Google Scholar 

  53. D. Molina-Manso, M. Manzano, J.C. Doadrio, G. Del Prado, A. Ortiz-Pérez, M. Vallet-Regí, E. Gómez-Barrena, J. Esteban, Int. J. Antimicrob. Agents 40(3), 252 (2012)

    Article  CAS  Google Scholar 

  54. S. Bhattacharyya, A. Agrawal, C. Knabe, P. Ducheyne, Biomaterials 35, 509 (2014)

    Article  CAS  Google Scholar 

  55. M. Varisco, N. Khanna, P.S. Brunetto, K.M. Fromm, Chem. Med. Chem. 9(6), 1221 (2014)

    Article  CAS  Google Scholar 

  56. http://www.pharmacopeia.cn/v29240/usp29nf24s0c51. Accessed 2 November 2014

  57. G.S. Timmins, V. Deretic, Mol. Microbiol. 62(5), 1220 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors would like to thanks the Romanian National Authority for Scientific Research (CNCS–UEFISCDI) for financial support (Grant PN-II-RU-PD-2013-3-0090). Project INFRANANOCHEM-19/01.03.2009 funded by EU (ERDF) and Romanian Government is gratefully acknowledged for the TEM and DLS equipments.

Conflict of interest

The authors report no conflicts of interest in this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Madalina Tudose or Daniela C. Culita.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tudose, M., Culita, D.C., Munteanu, C. et al. Antibacterial Activity Evaluation of Silver Nanoparticles Entrapped in Silica Matrix Functionalized with Antibiotics. J Inorg Organomet Polym 25, 869–878 (2015). https://doi.org/10.1007/s10904-015-0176-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-015-0176-7

Keywords

Navigation