Skip to main content
Log in

Formation of Polymeric Lewis Acid–Lewis Base Complexes with Well-defined Organoboron Polymers

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

The binding of Lewis bases to organoboron polymeric Lewis acids has been studied and the parameters that determine the complexation equilibrium have been investigated, which include (i) the strength of the individual Lewis acids and Lewis bases, (ii) concentration, and (iii) temperature. While the strongly Lewis acidic borane polymers poly(4-bis(pentafluorophenyl)borylstyrene) (PS-BPf) and poly(4-(di-2-thienylboryl)styrene) (PS-BTh) form isolable complexes with strong Lewis bases such as 4-t-butylpyridine (tPy), a temperature dependent equilibrium is established with weaker bases such as THF. Similarly, the weakly Lewis acidic boronate polymer poly(4-diethoxyborylstyrene) (PS-BOEt) undergoes a temperature dependent equilibrium with the strong Lewis base 4-dimethylaminopyridine (DMAP), while poly(4-pinacolatoborylstyrene) (PS-BPin) does not significantly bind to pyridine bases. Decomplexation of PS-BTh· t Py is achieved by treatment with the stronger Lewis acid, B(C6F5)3, thereby confirming the reversible nature of the polymeric Lewis acid–base adducts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  1. F. Jäkle, Coord. Chem. Rev. 250, 1107 (2006)

    Article  CAS  Google Scholar 

  2. D. E. De Vos, I. F. J. Vankelecom, P. A. Jacobs, Chiral Catalyst Immobilization and Recycling (Wiley-VCH: New York, 2000)

    Google Scholar 

  3. E. H. Yamamoto, Lewis Acids in Organic Synthesis (Wiley-VCH: New York, 2000)

    Google Scholar 

  4. D. C. Sherrington, A. C. Kybett, Supported Catalysts and Their Applications (Royal Society of Chemistry: Cambridge, 2001)

    Google Scholar 

  5. G. Wulff, Chem. Rev. 102, 1 (2002)

    Article  CAS  Google Scholar 

  6. M. Nicolas, B. Fabre, J. Simonet, Chem. Commun., 1881 (1999)

  7. B. Appleton, T. D. Gibson, Sens. Actuators, B 65, 302 (2000)

    Google Scholar 

  8. M. Sano, J. Okamura, Y. Kanekiyo, S. Shinkai, Colloids Surf., A 169, 131 (2000)

    Google Scholar 

  9. M. Miyata, Y. Chujo, Polym. J. 34, 967 (2002)

    Article  CAS  Google Scholar 

  10. E. Shoji, M. S. Freund, J. Am. Chem. Soc. 124, 12486 (2002)

    Article  CAS  Google Scholar 

  11. A. Matsumoto, R. Yoshida, K. Kataoka, Biomacromolecules 5, 1038 (2004)

    Article  CAS  Google Scholar 

  12. A. Matsumoto, T. Kurata, D. Shiino, K. Kataoka, Macromolecules 37, 1502 (2004)

    Article  CAS  Google Scholar 

  13. B. Elmas, M. A. Onur, S. Senel, A. Tuncel, Colloids Surf. A 232, 253 (2004)

    Google Scholar 

  14. G. Kahraman, O. Beskardes, Z. M. O. Rzaev, E. Piskin, Polymer 45, 5813 (2004)

    Article  CAS  Google Scholar 

  15. K. Shiomori, A. E. Ivanov, I. Y. Galaev, Y. Kawano, B. Mattiasson, Macromol. Chem. Phys. 205, 27 (2004)

    Article  CAS  Google Scholar 

  16. S. Kabilan, A. J. Marshall, F. K. Sartain, M. -C. Lee, A. Hussain, X. Yang, J. Blyth, N. Karangu, K. James, J. Zeng, D. Smith, A. Domschke, C. R. Lowe, Biosens. Bioelectron. 20, 1602 (2005)

    Article  CAS  Google Scholar 

  17. E. K. Çimen, Z. M. O. Rzaev, E. Piskin, J. Appl. Polym. Sci. 95, 573 (2005)

    Article  CAS  Google Scholar 

  18. A. Sundararaman, M. Victor, R. Varughese, F. Jäkle, J. Am. Chem. Soc. 127, 13748 (2005)

    Article  CAS  Google Scholar 

  19. N. Matsumi, K. Sugai, H. Ohno, Macromolecules 36, 2321 (2003)

    Article  CAS  Google Scholar 

  20. W. Xu, X. -G. Sun, C. A. Angell, Electrochim. Acta 48, 2255 (2003)

    Article  CAS  Google Scholar 

  21. M. Saito, H. Ikuta, Y. Uchimoto, M. Wakihara, S. Yokoyama, T. Yabe, M. Yamamoto, J. Phys. Chem. B 107, 11608 (2003)

    Google Scholar 

  22. Y. Chujo, N. Takizawa, T. Sakurai, J. Chem. Soc., Chem. Commun., 227 (1994)

  23. N. Matsumi, K. Naka, Y. Chujo, J. Am. Chem. Soc. 120, 5112 (1998)

    Article  CAS  Google Scholar 

  24. N. Matsumi, M. Nakashiba, T. Mizumo, H. Ohno, Macromolecules 38, 2040 (2005)

    Article  CAS  Google Scholar 

  25. For alternative methods, see for example: (a) ref. 18. (b) N. Matsumi, K. Naka, Y. Chujo, J. Am. Chem. Soc. 120, 10776 (1998). (c) J. B. Heilmann, M. Scheibitz, Y. Qin, A. Sundararaman, F. Jäkle, T. Kretz, M. Bolte, H. -W. Lerner, M. C. Holthausen, M. Wagner, Angew. Chem. Int. Ed. 45, 920 (2006). (d) J. B. Heilmann, Y. Qin, F. Jäkle, H. -W. Lerner, M. Wagner, Inorg. Chim. Acta 359, 4802 (2006)

  26. F. Jäkle, J. Inorg. Organomet. Polym. Mater. 15, 293 (2005)

    Article  CAS  Google Scholar 

  27. T. C. Chung, W. Janvikul, J. Organomet. Chem. 581, 176 (1999)

    Article  CAS  Google Scholar 

  28. Y. Qin, G. Cheng, A. Sundararaman, F. Jäkle, J. Am. Chem. Soc. 124, 12672 (2002)

    Article  CAS  Google Scholar 

  29. Y. Qin, G. Cheng, O. Achara, K. Parab, F. Jäkle, Macromolecules 37, 7123 (2004)

    Article  CAS  Google Scholar 

  30. K. Ishihara, N. Hananki, H. Yamamoto, Synlett 8, 577 (1993)

    Article  Google Scholar 

  31. W. E. Piers, T. Chivers, Chem. Soc. Rev. 26, 345 (1997)

    Article  CAS  Google Scholar 

  32. E. Y. -X. Chen, T. J. Marks, Chem. Rev. 100, 1391 (2000)

    Article  CAS  Google Scholar 

  33. W. E. Piers, Adv. Organomet. Chem. 52, 1 (2005)

    Article  CAS  Google Scholar 

  34. G. Erker, Dalton Trans. 1883 (2005)

  35. (a) K. Parab, Y. Qin, F. Jäkle, Polym. Mater. Sci. Eng. Prepr. 93, 422 (2005). (b) K. Parab, K. Venkatasubbaiah, F. Jäkle, J. Am. Chem. Soc. 128, 12879 (2006)

    Google Scholar 

  36. (a) Y. Qin, C. Pagba, P. Piotrowiak, F. Jäkle, J. Am. Chem. Soc. 126, 7015 (2004). (b) Y. Qin, I. Kiburu, S. Shah, F. Jäkle, Macromolecules 39, 9041 (2006)

    Google Scholar 

  37. The reversible assembly of polymers from bifunctional Lewis acids and bifunctional Lewis bases has been well documented: (a) M. Fontani, F. Peters, W. Scherer, W. Wachter, M. Wagner, P. Zanello, Eur. J. Inorg. Chem. 1453 (1998). (b) M. Grosche, E. Herdtweck, F. Peters, M. Wagner, Organometallics 18, 4669 (1999)

    Google Scholar 

  38. Recent reviews of supramolecular polymers: (a) L. Brunsveld, B. J. B. Folmer, E. W. Meijer, R. P. Sijbesma, Chem. Rev. 101, 4071 (2001). (b) U. S. Schubert, C. Eschbaumer, Angew. Chem. Int. Ed. 41, 2892 (2002). (c) J. -M. Lehn, Science 295, 2400 (2002). (d) H. Hofmeier, U. S. Schubert, Chem. Soc. Rev. 33, 373 (2004). (e) J. M. Pollino, M. Weck, Chem. Soc. Rev. 34, 193 (2005). (f) G. Amstrong, M. Buggy, J. Mater. Sci. 40, 547 (2005). (g) J. -M. Lehn, Prog. Polym. Sci. 30, 814 (2005). (h) A. Ciferri, (ed.) Supramolecular Polymers, Second Edition (2005), pp. 761

  39. Recent examples of supramolecular polymers: (a) B. J. B. Folmer, R. P. Sijbesma, R. M. Versteegen, J. A. J. van der Rijt, E. W. Meijer, Adv. Mater. 12, 874 (2000). (b) A. T. Cate, R. P. Sijbesma, Macromol. Rapid Commun. 23, 1094 (2002). (c) K. J. Calzia, G. N. Tew, Macromolecules 35, 6090 (2002). (d) V. Simic, L. Bouteiller, M. Jalabert, J. Am. Chem. Soc. 125, 13148 (2003). (e) B. W. Messmore, J. F. Hulvat, E. D. Sone, S. I. Stupp, J. Am. Chem. Soc. 126, 14452 (2004). (f) Y. Bodenthin, U. Pietsch, H. Mohwald, D. G. Kurth, J. Am. Chem. Soc. 127, 3110 (2005). (g) S. Sivakova, D. A. Bohnsack, M. E. Mackay, P. Suwanmala, S. J. Rowan, J. Am. Chem. Soc. 127, 18202 (2005). (h) J. L. Gorczynski, J. Chen, C. L. Fraser, J. Am. Chem. Soc. 127, 14956 (2005). (i) R. Dobrawa, M. Lysetska, P. Ballester, M. Grune, F. Würthner, Macromolecules 38, 1315 (2005). (j) H. Hofmeier, R. Hoogenboom, M. E. L. Wouters, U. S. Schubert, J. Am. Chem. Soc. 127, 2913 (2005). (l) T. Park, S. C. Zimmerman, S. Nakashima, J. Am. Chem. Soc. 127, 6520 (2005). (l) E. Kolomiets, E. Buhler, S. J. Candau, J. -M. Lehn, Macromolecules 39, 1173 (2006)

    Google Scholar 

  40. T. Kato, Science 295, 2414 (2002)

    Article  CAS  Google Scholar 

  41. H. C. Brown, J. Chem. Soc. 1248 (1956)

  42. Studies on the binding of Lewis acids to donor-functionalized polymers are more common; see for example: (a) M. F. Roberts, S. A. Jenekhe, A. Cameron, M. Mcmillan, J. Perlstein, Chem. Mater. 6, 658 (1994). (b) J. W. Connolly, D. S. Dudis, S. Kumar, L. T. Gelbaum, N. Venkatasubramanian, Chem. Mater. 8, 54 (1996). (c) F. Genoud, I. Kulszewicz-Bajer, A. Bedel, J. -L. Oddou, C. Jeandey, A. Pron, Chem. Mater. 12, 744 (2000). (d) C. E. B. Evans, A. J. Lough, H. Grondey, I. Manners, New J. Chem. 24, 447 (2000). (e) S. -W. Kuo, C. -H. Wu, F. -C. Chang, Macromolecules 37, 192 (2004). (f) P. M. Iovine, M. N. Fletcher, S. Lin, Macromolecules 39, 6324 (2006)

    Google Scholar 

  43. Y. Qin, G. Cheng, K. Parab, A. Sundararaman, F. Jäkle, Macromol. Symp. 196, 337 (2003)

    Article  CAS  Google Scholar 

  44. R. F. Childs, D. L. Mulholland, A. Nixon, Can. J. Chem. 60, 801 (1982)

    Article  CAS  Google Scholar 

  45. We have previously shown for related bifunctional arylboranes and main-chain triarylborane polymers that the 11B NMR signal shifts from ca. 45–50 ppm to ca. 0 ppm upon complexation with pyridine bases. See ref. 18 and A. Sundararaman, K. Venkatasubbaiah, M. Victor, L. N. Zakharov, A. L. Rheingold, F. Jäkle, J. Am. Chem. Soc. 128, 16554 (2006)

  46. See also: P. A. Chase, L. D. Henderson, W. E. Piers, M. Parvez, W. Clegg, M. R. J. Elsegood, Organometallics 25, 349 (2006)

    Google Scholar 

  47. Pinacolborane species are known to form fairly strong complexes with fluoride: T. Neumann, Y. Dienes, T. Baumgartner, Org. Lett. 8, 495 (2006)

    Google Scholar 

Download references

Acknowledgments

We thank the National Science Foundation (NSF CAREER award CHE-0346828 to F.J. and MRI 0116066), the donors of the Petroleum Research Fund, administered by the American Chemical Society, and the Rutgers University Research Council for support of this research. F.J. is an Alfred P. Sloan research fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frieder Jäkle.

Additional information

This paper is dedicated to Professor Ian Manners in gratitude of his guidance throughout the years and recognition of his scientific accomplishments

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qin, Y., Jäkle, F. Formation of Polymeric Lewis Acid–Lewis Base Complexes with Well-defined Organoboron Polymers. J Inorg Organomet Polym 17, 149–157 (2007). https://doi.org/10.1007/s10904-006-9084-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-006-9084-1

Keywords

Navigation