Skip to main content
Log in

Primal-dual splittings as fixed point iterations in the range of linear operators

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

In this paper we study the convergence of the relaxed primal-dual algorithm with critical preconditioners for solving composite monotone inclusions in real Hilbert spaces. We prove that this algorithm define Krasnosel’skiĭ-Mann (KM) iterations in the range of a particular monotone self-adjoint linear operator with non-trivial kernel. Our convergence result generalizes (Condat in J Optim Theory Appl 158: 460–479, 2013, Theorem 3.3) and follows from that of KM iterations defined in the range of linear operators, which is a real Hilbert subspace under suitable conditions. The Douglas–Rachford splitting (DRS) with a non-standard metric is written as a particular instance of the primal-dual algorithm with critical preconditioners and we recover classical results from this new perspective. We implement the algorithm in total variation reconstruction, verifying the advantages of using critical preconditioners and relaxation steps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availibility

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Notes

  1. The computational saving time percentage of algorithm B with respect to algorithm A is given by \(100(\text {time} (A)- \text {time} (B))/\text {time} (A)\).

References

  1. Aubin, J.P., Frankowska, H.: Set-valued Analysis. Modern Birkhäuser Classics, Birkhäuser Boston, Inc., Boston, MA (2009) https://doi.org/10.1007/978-0-8176-4848-0

  2. Bauschke, H.H.: New demiclosedness principles for (firmly) nonexpansive operators. In: Bailey, D.H., Bauschke, H.H., Borwein, P., Garvan, F., Théra, M., Vanderwerff, J.D., Wolkowicz, H. (eds.) Computational and Analytical Mathematics. Springer Proceedings in Mathematics & Statistics 50, pp. 19–28. Springer, New York (2013) https://doi.org/10.1007/978-1-4614-7621-4_2

  3. Bauschke, H.H., Combettes, P.L.: Convex analysis and monotone operator theory in Hilbert spaces. Springer, New York (2017)

    Book  MATH  Google Scholar 

  4. Bauschke, H.H., Moursi, W.M.: On the Douglas-Rachford algorithm. Math. Program. 164, 263–284 (2017). https://doi.org/10.1007/s10107-016-1086-3

    Article  MathSciNet  MATH  Google Scholar 

  5. Boţ, R.I., Csetnek, E.R., Heinrich, A.: A primal-dual splitting algorithm for finding zeros of sums of maximal monotone operators. SIAM J. Optim. 23, 2011–2036 (2013). https://doi.org/10.1137/12088255X

    Article  MathSciNet  MATH  Google Scholar 

  6. Boţ, R.I., Hendrich, C.: A Douglas-Rachford type primal-dual method for solving inclusions with mixtures of composite and parallel-sum type monotone operators. SIAM J. Optim. 23, 2541–2565 (2013). https://doi.org/10.1137/120901106

    Article  MathSciNet  MATH  Google Scholar 

  7. Briceño, L., Cominetti, R., Cortés, C.E., Martínez, F.: An integrated behavioral model of land use and transport system: a hyper-network equilibrium approach. Netw. Spat. Econ. 8, 201–224 (2008). https://doi.org/10.1007/s11067-007-9052-5

    Article  MathSciNet  MATH  Google Scholar 

  8. Briceño-Arias, L.M., Combettes, P.L.: A monotone + skew splitting model for composite monotone inclusions in duality. SIAM J. Optim. 21, 1230–1250 (2011). https://doi.org/10.1137/10081602X

    Article  MathSciNet  MATH  Google Scholar 

  9. Briceño-Arias, L.M., Combettes, P.L.: Monotone operator methods for Nash equilibria in non-potential games. In: Bailey, D.H., Bauschke, H. H., Borwein, P., Garvan, F., Théra, M., Vanderwerff, J., and Wolkowicz, H. (eds.) Computational and Analytical Mathematics. Springer Proceedings in Mathematics & Statistics 50, pp. 143–159. Springer, New York (2013) https://doi.org/10.1007/978-1-4614-7621-4_9

  10. Briceño-Arias, L.M., Davis, D.: Forward-backward-half forward algorithm for solving monotone inclusions. SIAM J. Optim. 28, 2839–2871 (2018). https://doi.org/10.1137/17M1120099

    Article  MathSciNet  MATH  Google Scholar 

  11. Briceño-Arias, L.M., Deride, J., Vega, C.: Random activations in primal-dual splittings for monotone inclusions with a priori information. J. Optim. Theory Appl. 192, 56–81 (2022). https://doi.org/10.1007/s10957-021-01944-6

    Article  MathSciNet  MATH  Google Scholar 

  12. Briceño-Arias, L.M., López Rivera, S.: A projected primal-dual method for solving constrained monotone inclusions. J. Optim. Theory Appl 180, 907–924 (2019). https://doi.org/10.1007/s10957-018-1430-2

    Article  MathSciNet  MATH  Google Scholar 

  13. Briceño-Arias, L.M., Roldán, F.: Split-Douglas-Rachford algorithm for composite monotone inclusions and split-ADMM. SIAM J. Optim. 31, 2987–3013 (2021). https://doi.org/10.1137/21M1395144

    Article  MathSciNet  MATH  Google Scholar 

  14. Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vision 20, 89–97 (2004). https://doi.org/10.1023/B:JMIV.0000011320.81911.38

    Article  MathSciNet  MATH  Google Scholar 

  15. Chambolle, A., Caselles, V., Cremers, D., Novaga, M., Pock, T.: An introduction to total variation for image analysis. In: Fornasier, M. (ed.) Theoretical Foundations and Numerical Methods for Sparse Recovery. Radon Ser. Comput. Appl. Math. 9., pp. 263–340. Walter de Gruyter, Berlin (2010) https://doi.org/10.1515/9783110226157.263

  16. Chambolle, A., Lions, P.L.: Image recovery via total variation minimization and related problems. Numer. Math. 76, 167–188 (1997). https://doi.org/10.1007/s002110050258

    Article  MathSciNet  MATH  Google Scholar 

  17. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vision 40, 120–145 (2011). https://doi.org/10.1007/s10851-010-0251-1

    Article  MathSciNet  MATH  Google Scholar 

  18. Colas, J., Pustelnik, N., Oliver, C., Abry, P., Géminard, J.-C., Vidal, V.: Nonlinear denoising for characterization of solid friction under low confinement pressure. Phys. Rev. E 100, 032803 (2019). https://doi.org/10.1103/PhysRevE.100.032803

    Article  Google Scholar 

  19. Combettes, P.L.: Quasi-Fejérian analysis of some optimization algorithms. In: Butnariu, D., Censor, Y., Reich, S. (eds.) Inherently parallel algorithms in feasibility and optimization and their applications. Stud. Comput. Math. 8, pp. 115–152. North-Holland, Amsterdam (2001) https://doi.org/10.1016/S1570-579X(01)80010-0

  20. Combettes, P.L.: Solving monotone inclusions via compositions of nonexpansive averaged operators. Optimization 53, 475–504 (2004). https://doi.org/10.1080/02331930412331327157

    Article  MathSciNet  MATH  Google Scholar 

  21. Combettes, P.L., Pesquet, J.-C.: Primal-dual splitting algorithm for solving inclusions with mixtures of composite, Lipschitzian, and parallel-sum type monotone operators. Set-Valued Var. Anal. 20, 307–330 (2012). https://doi.org/10.1007/s11228-011-0191-y

    Article  MathSciNet  MATH  Google Scholar 

  22. Combettes, P.L., Vũ, B.C.: Variable metric quasi-Fejér monotonicity. Nonlinear Anal. 78, 17–31 (2013). https://doi.org/10.1016/j.na.2012.09.008

    Article  MathSciNet  MATH  Google Scholar 

  23. Combettes, P.L., Vũ, B.C.: Variable metric forward-backward splitting with applications to monotone inclusions in duality. Optimization 63, 1289–1318 (2014). https://doi.org/10.1080/02331934.2012.733883

    Article  MathSciNet  MATH  Google Scholar 

  24. Condat, L.: A primal-dual splitting method for convex optimization involving Lipschitzian, proximable and linear composite terms. J. Optim. Theory Appl. 158, 460–479 (2013). https://doi.org/10.1007/s10957-012-0245-9

    Article  MathSciNet  MATH  Google Scholar 

  25. Daubechies, I., Defrise, M., De Mol, C.: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Comm. Pure Appl. Math. 57, 1413–1457 (2004). https://doi.org/10.1002/cpa.20042

    Article  MathSciNet  MATH  Google Scholar 

  26. Davis, D.: Convergence rate analysis of primal-dual splitting schemes. SIAM J. Optim. 25, 1912–1943 (2015). https://doi.org/10.1137/151003076

    Article  MathSciNet  MATH  Google Scholar 

  27. Eckstein, J., Bertsekas, D.P.: On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Program. 55, 293–318 (1992). https://doi.org/10.1007/BF01581204

    Article  MathSciNet  MATH  Google Scholar 

  28. Fukushima, M.: The primal Douglas-Rachford splitting algorithm for a class of monotone mappings with application to the traffic equilibrium problem. Math. Program. 72, 1–15 (1996). https://doi.org/10.1016/0025-5610(95)00012-7

    Article  MathSciNet  MATH  Google Scholar 

  29. Gabay, D.: Chapter IX applications of the method of multipliers to variational inequalities. In: Fortin, M. and Glowinski, R. (eds.) Augmented Lagrangian Methods: Applications to the Numerical Solution of Boundary-Value Problems. Studies in Mathematics and Its Applications 15, pp. 299–331. Elsevier (1983) https://doi.org/10.1016/S0168-2024(08)70034-1

  30. Gafni, E.M., Bertsekas, D.P.: Two-metric projection methods for constrained optimization. SIAM J. Control Optim. 22, 936–964 (1984). https://doi.org/10.1137/0322061

    Article  MathSciNet  MATH  Google Scholar 

  31. Glowinski, R., Marrocco, A.: Sur l’approximation, par éléments finis d’ordre un, et la résolution, par pénalisation-dualité, d’une classe de problèmes de Dirichlet non linéaires. Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge Anal. Numér. 9, 41–76 (1975)

  32. Goldstein, A.A.: Convex programming in Hilbert space. Bull. Amer. Math. Soc. 70, 709–710 (1964). https://doi.org/10.1090/S0002-9904-1964-11178-2

    Article  MathSciNet  MATH  Google Scholar 

  33. Hansen, P.C., Nagy, J.G., O’Leary, D.P.: Deblurring Images: Matrices, Spectra, and Filtering. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2006) https://doi.org/10.1137/1.9780898718874

  34. He, B., Yuan, X.: Convergence analysis of primal-dual algorithms for a saddle-point problem: from contraction perspective. SIAM J. Imaging Sci. 5, 119–149 (2012). https://doi.org/10.1137/100814494

    Article  MathSciNet  MATH  Google Scholar 

  35. Lions, P.L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16, 964–979 (1979). https://doi.org/10.1137/0716071

    Article  MathSciNet  MATH  Google Scholar 

  36. Mallat, S.: A wavelet tour of signal processing: the sparse way. Elsevier/Academic Press, Amsterdam (2009)

    MATH  Google Scholar 

  37. Martinet, B.: Brève communication. régularisation d’inéquations variationnelles par approximations successives. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 4, 154–158 (1970) http://www.numdam.org/item/M2AN_1970__4_3_154_0

  38. Mises, R.V., Pollaczek-Geiringer, H.: Praktische verfahren der gleichungsauflösung. Z. Angew. Math. Mech. (1929). https://doi.org/10.1002/zamm.19290090206

    Article  MATH  Google Scholar 

  39. Molinari, C., Peypouquet, J., Roldan, F.: Alternating forward-backward splitting for linearly constrained optimization problems. Optim. Lett. 14, 1071–1088 (2020). https://doi.org/10.1007/s11590-019-01388-y

    Article  MathSciNet  MATH  Google Scholar 

  40. Pock, T., Chambolle, A.: Diagonal preconditioning for first order primal-dual algorithms in convex optimization. In: 2011 international conference on computer vision, pp. 1762–1769 (2011) https://doi.org/10.1109/ICCV.2011.6126441

  41. Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14, 877–898 (1976). https://doi.org/10.1137/0314056

    Article  MathSciNet  MATH  Google Scholar 

  42. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D. 60, 259–268 (1992). https://doi.org/10.1016/0167-2789(92)90242-F

    Article  MathSciNet  MATH  Google Scholar 

  43. Showalter, R.E.: Monotone operators in banach space and nonlinear partial differential equations. Mathematical surveys and monographs 49, American mathematical society, Providence, RI (1997) https://doi.org/10.1090/surv/049

  44. Svaiter, B.F.: On weak convergence of the Douglas-Rachford method. SIAM J. Control Optim. 49, 280–287 (2011). https://doi.org/10.1137/100788100

    Article  MathSciNet  MATH  Google Scholar 

  45. Vũ, B.C.: A splitting algorithm for dual monotone inclusions involving cocoercive operators. Adv. Comput. Math. 38, 667–681 (2013). https://doi.org/10.1007/s10444-011-9254-8

    Article  MathSciNet  MATH  Google Scholar 

  46. Yang, Y., Tang, Y., Wen, M., Zeng, T.: Preconditioned Douglas-Rachford type primal-dual method for solving composite monotone inclusion problems with applications. Inverse Probl. Imaging 15, 787–825 (2021). https://doi.org/10.3934/ipi.2021014

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first author thanks the support of ANID under grants FONDECYT 1190871, Redes 180032, and Centro de Modelamiento Matemático (CMM), ACE210010 and FB210005, BASAL funds for centers of excellence. The second author thanks the support of ANID-Subdirección de Capital Humano/Doctorado Nacional/2018-21181024 and by the Dirección de Postgrado y Programas from UTFSM through Programa de Incentivos a la Iniciación Científica (PIIC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Roldán.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

6 Appendix

6 Appendix

Proof of Lemma 2.4:

Let \( \varvec{x} \in \mathrm{Fix}\,{\varvec{S}}.\) Since \({\varvec{S}}={\varvec{S}}\circ \varvec{Q}\) we have

$$\begin{aligned} {\varvec{S}}\varvec{x} = \varvec{x}\quad&\Leftrightarrow \quad {\varvec{S}}(\varvec{Q} \varvec{x}) = \varvec{x}\\&\Rightarrow \quad \varvec{Q}\circ {\varvec{S}}(\varvec{Q}\varvec{x}) = \varvec{Q} \varvec{x}, \end{aligned}$$

which yields \(\varvec{Q}\varvec{x} \in \mathrm{Fix}\,(\varvec{Q}\circ {\varvec{S}})\). Thus, \(\varvec{x}={\varvec{S}}(\varvec{Q} \varvec{x}) \in {\varvec{S}}(\mathrm{Fix}\,(\varvec{Q}\circ {\varvec{S}}))\) and we conclude \(\mathrm{Fix}\,{\varvec{S}}\subset {\varvec{S}}( \mathrm{Fix}\,(\varvec{Q}\circ {\varvec{S}}))\). Conversely, let \(\varvec{x} \in \mathrm{Fix}\,(\varvec{Q}\circ {\varvec{S}})\). Since \({\varvec{S}}={\varvec{S}}\circ \varvec{Q}\), we have

$$\begin{aligned} \varvec{Q} ({\varvec{S}}\varvec{x})=\varvec{x}\quad&\Rightarrow \quad {\varvec{S}}(\varvec{Q} ({\varvec{S}}\varvec{x}))={\varvec{S}}\varvec{x}\\&\Rightarrow \quad {\varvec{S}}({\varvec{S}}\varvec{x})={\varvec{S}}\varvec{x}\\&\Rightarrow \quad {\varvec{S}}\varvec{x} \in \mathrm{Fix}\,{\varvec{S}}. \end{aligned}$$

Thus \( {\varvec{S}}( \mathrm{Fix}\,(\varvec{Q}\circ {\varvec{S}})) \subset \mathrm{Fix}\,{\varvec{S}}\) and the result follows. \(\square \)

Proof of Proposition 3.1:

1: It is a direct consequence of [13, Proposition 2.1]. 2.: (2a \(\Rightarrow \) 2b). Let \((v_n)_{n \in {\mathbb {N}}}\) be sequence in \(\mathrm{ran }(\varSigma ^{-1} - L \varUpsilon L^*)\) such that \(v_n \rightarrow v.\) Therefore, for each \(n \in {\mathbb {N}},\) there exists \(u_n \in {\mathcal {G}}\) such that \(v_n=\varSigma ^{-1} u_n - L \varUpsilon L^* u_n\). Note that \({\varvec{V}}(\varUpsilon L^* u_n , u_n)=(0, v_n)\rightarrow (0, v)\). Since \(\mathrm{ran }\, {\varvec{V}}\) is closed, there exists some \((x,u) \in {\mathcal {H}}\times {\mathcal {G}}\) such that \({\varvec{V}}(x,u)=(0, v)\), i.e.,

$$\begin{aligned} {\varvec{V}}(x,u)=(0,v) \quad&\Leftrightarrow \quad {\left\{ \begin{array}{ll} \varUpsilon ^{-1}x- L^* u=0\\ \varSigma ^{-1} u- L x = v \end{array}\right. }\\&\Rightarrow \quad \varSigma ^{-1} u- L \varUpsilon L^* u = v. \end{aligned}$$

Then \( v \in \mathrm{ran }(\varSigma ^{-1} - L \varUpsilon L^*)\), and therefore \(\mathrm{ran }(\varSigma ^{-1}- L \varUpsilon L^*)\) is closed.

(2b \(\Rightarrow \) 2a). Let \(\big ((y_n,v_n)\big )_{n \in {\mathbb {N}}}\) be a sequence in \(\mathrm{ran }\, {\varvec{V}}\) such that \((y_n,v_n) \rightarrow (y,v).\) Then, for every \(n \in {\mathbb {N}}\), there exists \((x_n,u_n)\) such that \((y_n,u_n)={\varvec{V}}(x_n,u_n)\), or equivalently,

$$\begin{aligned} {\left\{ \begin{array}{ll} y_n=\varUpsilon ^{-1}x_n- L^*u_n\\ v_n=\varSigma ^{-1} u_n- Lx_n. \end{array}\right. } \end{aligned}$$
(6.1)

By applying \(L \varUpsilon \) to the first equation in (6.1) and adding it to the second equation, by the continuity of \(\varUpsilon \) and L, we obtain

$$\begin{aligned} (\varSigma ^{-1} - L \varUpsilon L^*)u_n= L \varUpsilon y_n + v_n\,\rightarrow \, L \varUpsilon y + v. \end{aligned}$$
(6.2)

Hence, since \(\mathrm{ran }(\varSigma ^{-1} - L \varUpsilon L^*)\) is closed, there exists \(u \in {\mathcal {G}}\) such that \(L \varUpsilon y+ v =(\varSigma ^{-1} - L \varUpsilon L^*)u\). We deduce \({\varvec{V}}\left( \varUpsilon (L^*u+y),u \right) =(y,v)\), and therefore \(\mathrm{ran }\, {\varvec{V}}\) is closed.

(2a \(\Leftrightarrow \) 2c). Define \({\tilde{{\varvec{V}}}} : {\mathcal {G}}\oplus {\mathcal {H}}\rightarrow {\mathcal {G}}\oplus {\mathcal {H}}: (u,x) \mapsto (\varSigma ^{-1} u-Lx,\varUpsilon ^{-1} x-L^*u)\). By the equivalence 2a \(\Leftrightarrow \) 2b \(\mathrm{ran }{\tilde{{\varvec{V}}}}\) is closed if and only if \(\mathrm{ran }(\varUpsilon ^{-1} - L^* \varSigma L)\) is closed. Consider the isometric map \(\varvec{\varLambda } : {\mathcal {H}}\oplus {\mathcal {G}}\rightarrow {\mathcal {G}}\oplus {\mathcal {H}}: (x,u) \mapsto (u,x)\). Since \(\varvec{\varLambda }\circ {\varvec{V}}={\tilde{{\varvec{V}}}}\), \({\mathrm{ran }\, {\varvec{V}}}\) is closed if and only if \(\mathrm{ran }{\tilde{{\varvec{V}}}}\) is closed and the result follows. \(\square \)

Proposition 6.1

In the context of Problem 1.1, set \(L=\mathrm{Id}\), let \(\varUpsilon :{\mathcal {H}}\rightarrow {\mathcal {H}}\) be a strongly monotone self adjoint linear bounded operator, set \(\varLambda :{\mathcal {H}}\times {\mathcal {H}}\rightarrow {\mathcal {H}}:(x,u)\mapsto x-\varUpsilon u\), let \({\varvec{V}}\), \({\varvec{W}}\), and \(G_{\varUpsilon ,B,A}\) be the operators defined in (1.8), (3.2), and (3.15), respectively. Then, \(\varLambda (\mathrm{Fix}\,(P_{{\mathrm{ran }\, {\varvec{V}}}}\circ J_{{\varvec{W}}}))=\mathrm{Fix}\,G_{\varUpsilon ,B,A}\).

Proof

The inclusion \(\subset \) is proved in (3.23). Conversely, since \(\varLambda ^*:z\mapsto (z,-\varUpsilon z)\), we have \(\varLambda \circ \varLambda ^*=\mathrm{Id}+\varUpsilon ^2\) and [3, Proposition 3.30 & Example 3.29] yields \(P_{{\mathrm{ran }\, {\varvec{V}}}}=P_{\mathrm{ran }\varLambda ^*}=\varLambda ^*(\mathrm{Id}+\varUpsilon ^2)^{-1} \varLambda \). Therefore, if \({\hat{z}}\in \mathrm{Fix}\,G_{\varUpsilon ,B,A}\), by setting \(({\hat{x}},{\hat{u}}):=\varLambda ^*(\mathrm{Id}+\varUpsilon ^2)^{-1}{\hat{z}}\), we have \({\hat{z}}=\varLambda ({\hat{x}},{\hat{u}})\) and we deduce from (3.22) that

$$\begin{aligned} P_{{\mathrm{ran }\, {\varvec{V}}}}\circ J_{{\varvec{W}}}({\hat{x}},{\hat{u}})&=\varLambda ^*(\mathrm{Id}+\varUpsilon ^2)^{-1} \varLambda (J_{{\varvec{W}}}({\hat{x}},{\hat{u}})) \nonumber \\&= \varLambda ^*(\mathrm{Id}+\varUpsilon ^2)^{-1}G_{\varUpsilon ,B,A} (\varLambda ({\hat{x}},{\hat{u}}))\nonumber \\&= \varLambda ^*(\mathrm{Id}+\varUpsilon ^2)^{-1}G_{\varUpsilon ,B,A}{\hat{z}}\nonumber \\&=\varLambda ^*(\mathrm{Id}+\varUpsilon ^2)^{-1} {\hat{z}}\nonumber \\&=({\hat{x}},{\hat{u}}). \end{aligned}$$
(6.3)

Consequently, \(({\hat{x}},{\hat{u}})\in \mathrm{Fix}\,(P_{{\mathrm{ran }\, {\varvec{V}}}}\circ J_{{\varvec{W}}})\) and \({\hat{z}}=\varLambda ({\hat{x}},{\hat{u}})\in \varLambda (\mathrm{Fix}\,(P_{{\mathrm{ran }\, {\varvec{V}}}}\circ J_{{\varvec{W}}}))\). \(\square \)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Briceño-Arias, L., Roldán, F. Primal-dual splittings as fixed point iterations in the range of linear operators. J Glob Optim 85, 847–866 (2023). https://doi.org/10.1007/s10898-022-01237-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-022-01237-w

Keywords

Mathematics Subject Classification

Navigation