Skip to main content
Log in

Compact mixed-integer programming formulations in quadratic optimization

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

We present a technique for producing valid dual bounds for nonconvex quadratic optimization problems. The approach leverages an elegant piecewise linear approximation for univariate quadratic functions due to Yarotsky (Neural Netw 94:103–114, 2017), formulating this (simple) approximation using mixed-integer programming (MIP). Notably, the number of constraints, binary variables, and auxiliary continuous variables used in this formulation grows logarithmically in the approximation error. Combining this with a diagonal perturbation technique to convert a nonseparable quadratic function into a separable one, we present a mixed-integer convex quadratic relaxation for nonconvex quadratic optimization problems. We study the strength (or sharpness) of our formulation and the tightness of its approximation. Further, we show that our formulation represents feasible points via a Gray code. We close with computational results on problems with quadratic objectives and/or constraints, showing that our proposed method (i) across the board outperforms existing MIP relaxations from the literature, and (ii) on hard instances produces better bounds than exact solvers within a fixed time budget.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Furthermore, Yarotsky [57] observes that it is straightforward to represent each of the sawtooth functions as a composition of the standard ReLU activation function \(\sigma (x) = \max \{0,x\}\). For example, \(G_1(x) = 2\sigma (x) - 4 \sigma (x-\frac{1}{2}) + 2 \sigma (x-1)\). In this way, \(F_L\) can be written as a neural network with a very particular choice of architecture and weight values.

  2. This can be accomplished in a number of ways: for example, by computing the minimum eigenvalue of D, or by solving a semidefinite programming problem [23].

  3. In actuality, any Gray code, not just the reflected Gray code studied in this paper, yields a (potentially distinct) logarithmic formulation for a univariate function. Here, we mean the one constructed with the reflected Gray code, which is the most common choice regardless.

  4. CPLEX does not support nonconvex quadratic constraints of this form, so we do not include a corresponding approach with the diagonal shift.

References

  1. Adjiman, C.S., Androulakis, I.P., Floudas, C.A.: A global optimization method, \(\alpha \)bb, for general twice-differentiable constrained NLPs–II. Implementation and computational results. Comput. Chem. Eng. 22(9), 1159–1179 (1998)

    Article  Google Scholar 

  2. Adjiman, C.S., Dallwig, S., Floudas, C.A., Neumaier, A.: A global optimization method, \(\alpha \)BB, for general twice-differentiable constrained NLPs–I. Theoretical advances. Comput. Chem. Eng. 22(9), 1137–1158 (1998)

    Article  Google Scholar 

  3. Anderson, R., Huchette, J., Tjandraatmadja, C., Vielma, J.P.: Strong mixed-integer programming formulations for trained neural networks. In: A. Lodi, V. Nagarajan (eds.) Proceedings of the 20th Conference on Integer Programming and Combinatorial Optimization, pp. 27–42. Springer International Publishing, Cham (2019). arXiv:1811.08359

  4. Anderson, R., Huchette, J., Tjandraatmadja, C., Vielma, J.P.: Strong mixed-integer programming formulations for trained neural networks. In: Lodi, A., Nagarajan, V. (eds.) Integer Programming and Combinatorial Optimization, pp. 27–42. Springer International Publishing, Cham (2019)

    Chapter  Google Scholar 

  5. Androulakis, I., Maranas, C.D.: \(\alpha \)BB: a global optimization method for general constrained nonconvex problems. J. Glob. Optim. 7(4), 337–363 (1995)

    Article  MathSciNet  Google Scholar 

  6. Androulakis, I.P., Maranas, C.D., Floudas, C.A.: \(\alpha \)bb: a global optimization method for general constrained nonconvex problems. J. Glob. Optim. 7(4), 337–363 (1995)

    Article  MathSciNet  Google Scholar 

  7. Bader, J., Hildebrand, R., Weismantel, R., Zenklusen, R.: Mixed integer reformulations of integer programs and the affine tu-dimension of a matrix. Math. Program. 169(2), 565–584 (2018)

    Article  MathSciNet  Google Scholar 

  8. Billionnet, A., Elloumi, S., Lambert, A.: Extending the QCR method to general mixed-integer programs. Math. Program. 131(1–2), 381–401 (2012). https://doi.org/10.1007/s10107-010-0381-7

    Article  MathSciNet  MATH  Google Scholar 

  9. Billionnet, A., Elloumi, S., Lambert, A.: Exact quadratic convex reformulations of mixed-integer quadratically constrained problems. Math. Program. 158(1), 235–266 (2016). https://doi.org/10.1007/s10107-015-0921-2

    Article  MathSciNet  MATH  Google Scholar 

  10. Bonami, P., Günlük, O., Linderoth, J.: Globally solving nonconvex quadratic programming problems with box constraints via integer programming methods. Math. Program. Comput. 10(3), 333–382 (2018). https://doi.org/10.1007/s12532-018-0133-x

    Article  MathSciNet  MATH  Google Scholar 

  11. Bunel, R., Lu, J., Turkaslan, I., Torr, P.H., Kohli, P., Kumar, M.P.: Branch and bound for piecewise linear neural network verification (2019). arXiv:1909.06588

  12. Burer, S., Saxena, A.: The MILP road to MIQCP. In: Lee, J., Leyffer, S. (eds.) Mixed Integer Nonlinear Programming, pp. 373–405. Springer, New York (2012)

    Chapter  Google Scholar 

  13. Castillo, P.A.C., Castro, P.M., Mahalec, V.: Global optimization of MIQCPs with dynamic piecewise relaxations. J. Glob. Optim. 71(4), 691–716 (2018). https://doi.org/10.1007/s10898-018-0612-7

    Article  MathSciNet  MATH  Google Scholar 

  14. Castro, P.M.: Normalized multiparametric disaggregation: an efficient relaxation for mixed-integer bilinear problems. J. Glob. Optim. 64(4), 765–784 (2015)

    Article  MathSciNet  Google Scholar 

  15. Castro, P.M.: Tightening piecewise McCormick relaxations for bilinear problems. Comput. Chem. Eng. 72, 300–311 (2015). https://doi.org/10.1016/j.compchemeng.2014.03.025

    Article  Google Scholar 

  16. Castro, P.M., Liao, Q., Liang, Y.: Comparison of mixed-integer relaxations with linear and logarithmic partitioning schemes for quadratically constrained problems. Optim. Eng. (2021). https://doi.org/10.1007/s11081-021-09603-5

  17. Chen, J., Burer, S.: Globally solving nonconvex quadratic programming problems via completely positive programming. Math. Program. Comput. 4(1), 33–52 (2012)

    Article  MathSciNet  Google Scholar 

  18. Croxton, K.L., Gendron, B., Magnanti, T.L.: A comparison of mixed-integer programming models for nonconvex piecewise linear cost minimization problems. Manag. Sci. 49(9), 1268–1273 (2003)

    Article  Google Scholar 

  19. Dantzig, G.B.: On the significance of solving linear programming problems with some integer variables. Econometrica J. Econom. Soc. 30–44 (1960)

  20. Dey, S.S., Gupte, A.: Analysis of milp techniques for the pooling problem. Oper. Res. 63(2), 412–427 (2015)

    Article  MathSciNet  Google Scholar 

  21. Dey, S.S., Kazachkov, A.M., Lodi, A., Mu, G.: Cutting plane generation through sparse principal component analysis. http://www.optimization-online.org/DB_HTML/2021/02/8259.html

  22. Dong, H.: Relaxing nonconvex quadratic functions by multiple adaptive diagonal perturbations. SIAM J. Optim. 26(3), 1962–1985 (2016)

    Article  MathSciNet  Google Scholar 

  23. Dong, H., Luo, Y.: Compact disjunctive approximations to nonconvex quadratically constrained programs (2018)

  24. Dunning, I., Huchette, J., Lubin, M.: JuMP: a modeling language for mathematical optimization. SIAM Rev. 59(2), 295–320 (2017)

    Article  MathSciNet  Google Scholar 

  25. Elloumi, S., Lambert, A.: Global solution of non-convex quadratically constrained quadratic programs. Optim. Methods Software 34(1), 98–114 (2019). https://doi.org/10.1080/10556788.2017.1350675

    Article  MathSciNet  MATH  Google Scholar 

  26. Fortet, R.: L’algebre de boole et ses applications en recherche operationnelle. Trabajos de Estadistica 11(2), 111–118 (1960). https://doi.org/10.1007/bf03006558

    Article  MathSciNet  MATH  Google Scholar 

  27. Foss, F.A.: The use of a reflected code in digital control systems. Transactions of the I.R.E. Professional Group on Electronic Computers EC-3(4), 1–6 (1954). https://doi.org/10.1109/irepgelc.1954.6499244

  28. Frangioni, A., Gentile, C.: Perspective cuts for a class of convex 0–1 mixed integer programs. Math. Program. Ser. A 106, 225–236 (2006)

    Article  MathSciNet  Google Scholar 

  29. Frangioni, A., Gentile, C.: SDP diagonalizations and perspective cuts for a class of nonseparable MIQP. Oper. Res. Lett. 35(2), 181–185 (2007)

    Article  MathSciNet  Google Scholar 

  30. Furini, F., Traversi, E., Belotti, P., Frangioni, A., Gleixner, A., Gould, N., Liberti, L., Lodi, A., Misener, R., Mittelmann, H., Sahinidis, N.V., Vigerske, S., Wiegele, A.: QPLIB: a library of quadratic programming instances. Math. Program. Comput. 11(2), 237–265 (2019)

    Article  MathSciNet  Google Scholar 

  31. Galli, L., Letchford, A.N.: A compact variant of the qcr method for quadratically constrained quadratic 0–1 programs. Optim. Lett. 8(4), 1213–1224 (2014). https://doi.org/10.1007/s11590-013-0676-8

    Article  MathSciNet  MATH  Google Scholar 

  32. Galli, L., Letchford, A.N.: A binarisation heuristic for non-convex quadratic programming with box constraints. Oper. Res. Lett. 46(5), 529–533 (2018). https://doi.org/10.1016/j.orl.2018.08.005

    Article  MathSciNet  MATH  Google Scholar 

  33. Glover, F.: Improved linear integer programming formulations of nonlinear integer problems. Manag. Sci. 22(4), 455–460 (1975). https://doi.org/10.1287/mnsc.22.4.455

    Article  MathSciNet  MATH  Google Scholar 

  34. Hammer, P., Ruben, A.: Some remarks on quadratic programming with 0–1 variables. Revue Francaise D Automatique Informatique Recherche Operationnelle 4(3), 67–79 (1970)

    MathSciNet  MATH  Google Scholar 

  35. Hansen, P., Jaumard, B., Ruiz, M., Xiong, J.: Global minimization of indefinite quadratic functions subject to box constraints. Naval Res. Logist. (NRL) 40(3), 373–392 (1993). https://doi.org/10.1002/1520-6750(199304)40:3<373::AID-NAV3220400307>3.0.CO;2-A

    Article  MathSciNet  MATH  Google Scholar 

  36. Huchette, J., Vielma, J.P.: Nonconvex piecewise linear functions: Advanced formulations and simple modeling tools. Oper. Res. (to appear). arXiv:1708.00050

  37. Huchette, J.A.: Advanced mixed-integer programming formulations : methodology, computation, and application. Ph.D. thesis, Massachusetts Institute of Technology (2018)

  38. Kaibel, V., Pashkovich, K.: Constructing Extended Formulations from Reflection Relations, pp. 77–100. Springer, Berlin (2013)

  39. Lee, J., Wilson, D.: Polyhedral methods for piecewise-linear functions I: the lambda method. Discrete Appl. Math. 108, 269–285 (2001)

    Article  MathSciNet  Google Scholar 

  40. Magnanti, T.L., Stratila, D.: Separable concave optimization approximately equals piecewise linear optimization. In: D. Bienstock, G. Nemhauser (eds.) Lecture Notes in Computer Science, vol. 3064, pp. 234–243. Springer (2004)

  41. Misener, R., Floudas, C.A.: Global optimization of mixed-integer quadratically-constrained quadratic programs (MIQCQP) through piecewise-linear and edge-concave relaxations. Math. Program. 136(1), 155–182 (2012). https://doi.org/10.1007/s10107-012-0555-6

    Article  MathSciNet  MATH  Google Scholar 

  42. Nagarajan, H., Lu, M., Wang, S., Bent, R., Sundar, K.: An adaptive, multivariate partitioning algorithm for global optimization of nonconvex programs. J. Glob. Optim. 74, 639–675 (2019)

    Article  MathSciNet  Google Scholar 

  43. Padberg, M.: Approximating separable nonlinear functions via mixed zero-one programs. Oper. Res. Lett. 27, 1–5 (2000)

    Article  MathSciNet  Google Scholar 

  44. Pardalos, P., Vavasis, S.: Quadratic programming with one negative eigenvalue is NP-hard. J. Glob. Optim. 1(1), 15–22 (1991)

    Article  MathSciNet  Google Scholar 

  45. Phan-huy-Hao, E.: Quadratically constrained quadratic programming: some applications and a method for solution. Zeitschrift für Oper. Res. 26(1), 105–119 (1982)

    MathSciNet  MATH  Google Scholar 

  46. Savage, C.: A survey of combinatorial gray codes. SIAM Rev. 39(4), 605–629 (1997)

    Article  MathSciNet  Google Scholar 

  47. Saxena, A., Bomani, P., Lee, J.: Convex relaxations of non-convex mixed integer quadratically constrained programs: Projected formulations. Math. Program. 130, 359–413 (2011)

    Article  MathSciNet  Google Scholar 

  48. Serra, T., Ramalingam, S.: Empirical bounds on linear regions of deep rectifier networks (2018). arXiv:1810.03370

  49. Serra, T., Tjandraatmadja, C., Ramalingam, S.: Bounding and counting linear regions of deep neural networks. In: Thirty-fifth International Conference on Machine Learning (2018)

  50. Tjeng, V., Xiao, K., Tedrake, R.: Verifying neural networks with mixed integer programming. In: International Conference on Learning Representations (2019)

  51. Vielma, J.P., Ahmed, S., Nemhauser, G.: Mixed-integer models for nonseparable piecewise-linear optimization: unifying framework and extensions. Oper. Res. 58(2), 303–315 (2010)

    Article  MathSciNet  Google Scholar 

  52. Vielma, J.P., Ahmed, S., Nemhauser, G.: Mixed-integer models for nonseparable piecewise-linear optimization: unifying framework and extensions. Oper. Res. 58(2), 303–315 (2010). https://doi.org/10.1287/opre.1090.0721

    Article  MathSciNet  MATH  Google Scholar 

  53. Vielma, J.P., Nemhauser, G.L.: Modeling disjunctive constraints with a logarithmic number of binary variables and constraints. Math. Program. 128(1–2), 49–72 (2009). https://doi.org/10.1007/s10107-009-0295-4

    Article  MathSciNet  MATH  Google Scholar 

  54. Wei, Y.: Triangular function analysis. Comput. Math. Appl. 37(6), 37–56 (1999). https://doi.org/10.1016/s0898-1221(99)00075-9

    Article  MathSciNet  MATH  Google Scholar 

  55. Wiese, S.: A computational practicability study of MIQCQP reformulations. https://docs.mosek.com/whitepapers/miqcqp.pdf (2021). Accessed 22 Feb 2021

  56. Xia, W., Vera, J.C., Zuluaga, L.F.: Globally solving nonconvex quadratic programs via linear integer programming techniques. INFORMS J. Comput. 32(1), 40–56 (2020). https://doi.org/10.1287/ijoc.2018.0883

    Article  MathSciNet  MATH  Google Scholar 

  57. Yarotsky, D.: Error bounds for approximations with deep relu networks. Neural Netw. 94, 103–114 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Beach.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by AFOSR (Grant FA9550-21-0107) and ONR (Grant N00014-20-1-2156). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the Office of Naval Research or the Air Force Office of Scientific Research.

Appendices

Normalized multi-parametric disaggregation technique

We present a standard approach to descretizing continuous variables for handling bilinear products in nonlinear models. This approach is perhaps the most straightforward way to convert bilinear problems to MILPs and has been referred to as Normalized Multi-Parametric Disaggregation Technique (NMDT) [14]. We adapt the bilinear approach here to a squaring a single variable.

Consider \(x \in [0,1]\), and let L be a positive integer. We then use the representation

$$\begin{aligned} x&= \sum _{i=1}^p 2^{-i} \beta _i + \varDelta x \end{aligned}$$
(52a)
$$\begin{aligned} \beta _i&\in \{0,1\}&i \in \llbracket L \rrbracket \end{aligned}$$
(52b)
$$\begin{aligned} \varDelta x&\in [0, 2^{-L}], \end{aligned}$$
(52c)

where L is the number of binary variables to use.

Multiplying (52a) by x, and substituting the representation into the \(x \varDelta x\) term, we obtain

$$\begin{aligned} y&= x \cdot x = \sum _{i=1}^L 2^{-i} x\beta _i + x\varDelta x\\&= \sum _{i=1}^L 2^{-i} x\beta _i + \left( \sum _{i=1}^L 2^{-i} \beta _i + \varDelta x\right) \varDelta x \\&= \sum _{i=1}^L 2^{-i} (x + \varDelta x) \beta _i + \varDelta x^2 \end{aligned}$$

Now, using the fact that \(x + \varDelta x \in [0, 1+2^{-L}]\), first lift the model by adding variables \(u_i\) and \(\varDelta u\) such that \(u_i = (x + \varDelta x) \beta _i\) and \(\varDelta u = \varDelta x^2\), and then we relax these equations using McCormick Envelopes.

Given bounds \(x \in [ {x}^{\min }, {x}^{\max }]\) and \(\beta \in [0, 1]\), The McCormick envelope \({\mathcal {M}}(x,\beta )\) is defined as the following relaxation of \(u = x \beta \)

$$\begin{aligned}&{\mathcal {M}}(x, \beta ) = \left\{ (x, \beta , y) \in {[} {x}^{\min }, {x}^{\max }]\times [0,1] \times {\mathbb {R}}\ : (55) \right\} . \end{aligned}$$
(54)
$$\begin{aligned}&{x}^{\min } \cdot \beta \le \, u \le {x}^{\max }\cdot \beta \nonumber \\&\quad x - {x}^{\max }\cdot (1-\beta ) \le \, u \le x - {x}^{\min }\cdot (1-\beta ) \end{aligned}$$
(55)

To approximate \(u = x^2\) with \(x \in [0, {x}^{\max }]\), this becomes

$$\begin{aligned} {\mathcal {M}}(x) = \left\{ (x, u) \in [0, {x}^{\max }] \times {\mathbb {R}}\ : \ \begin{aligned}&\, u \ge 0 \\ {x}^{\max } (2 x - {x}^{\max }) \le&\, u \le {x}^{\max }\cdot x \end{aligned} \right\} . \end{aligned}$$
(56)

We present two ways to use this approach. The first is the most direct use of \(\texttt {NMDT}{}\), as used in [14]. This model is

$$\begin{aligned} x&= \sum _{i=1}^L 2^{-i} \beta _i + \varDelta x\end{aligned}$$
(57a)
$$\begin{aligned} y&= \sum _{i=1}^L 2^{-i} u_i + \varDelta u\end{aligned}$$
(57b)
$$\begin{aligned} (x, \beta _i, u_i)&\in {\mathcal {M}}(x, \beta _i) \quad i \in \llbracket L \rrbracket \end{aligned}$$
(57c)
$$\begin{aligned} (\varDelta x, x, \varDelta u)&\in {\mathcal {M}}(\varDelta x, x)\end{aligned}$$
(57d)
$$\begin{aligned} \beta _i&\in \{0,1\} \quad i \in \llbracket L \rrbracket \end{aligned}$$
(57e)
$$\begin{aligned} \varDelta x&\in [0, 2^{-L}] \end{aligned}$$
(57f)

Here, the only error introduced in the relaxation is from \(\varDelta u = x\varDelta x\), yielding a maximum error of \(2^{-L-2}\), again occurring when \(\varDelta x = 2^{-L-1}\).

Alternatively, we consider the expansion of the \(x \varDelta x\) term. We thus obtain the T-NMDT relaxation for \(y=x^2\).

$$\begin{aligned} x&= \sum _{i=1}^L 2^{-i} \beta _i + \varDelta x\end{aligned}$$
(58a)
$$\begin{aligned} y&= \sum _{i=1}^L 2^{-i} u_i + \varDelta u\end{aligned}$$
(58b)
$$\begin{aligned} (x+\varDelta x, \beta _i, u_i)&\in {\mathcal {M}}(x+\varDelta x, \beta _i) \quad i \in \llbracket L \rrbracket \end{aligned}$$
(58c)
$$\begin{aligned} (\varDelta x, \varDelta u)&\in {\mathcal {M}}(\varDelta x)\end{aligned}$$
(58d)
$$\begin{aligned} \beta _i&\in \{0,1\} \quad i \in \llbracket L \rrbracket \end{aligned}$$
(58e)
$$\begin{aligned} \varDelta x&\in [0, 2^{-L}] \end{aligned}$$
(58f)

Since \(\beta _i\) is binary, \(u_i = \beta _i (x + \varDelta x)\) is represented exactly. Thus, the only possible error is introduced in the relaxation of \(\varDelta y = \varDelta x^2\), which yields a maximum error of \(2^{-2L-2}\), occurring when \(\varDelta x = 2^{-L-1}\).

Now, the expected error of T-NMDT is the expected error from the relaxation of \(\varDelta y = \varDelta x^2\). Modeling \(\varDelta x\) as a uniform random variable within its bounds \([0,2^{-L}]\), and noting that the only overestimator from (56) is \(y \le 2^{-L} \varDelta x\) we obtain expected overapproximation error

$$\begin{aligned} \begin{array}{rl} {\mathbb {E}}(2^{-L} \varDelta x - \varDelta x^2) &{}= \int _{0}^{2^{-L}} 2^L (2^{-L} \varDelta x - \varDelta x^2) \mathrm d \varDelta x\\ &{}= 2^L \int _{0}^{2^{-L}} (2^{-L} \varDelta x - \varDelta x^2) \mathrm d \varDelta x\\ &{}= 2^L (\frac{1}{6} (2^{-L})^3)\\ &{}= \frac{1}{6} 2^{-2L}. \end{array} \end{aligned}$$
(59)

Similarly, the expected underapproximation error can be computed as \(\frac{1}{12} 2^{-2L}\).

Additional baseline computation summaries

In Table 9 we summarize the results of our baseline experiments stratified by the number of decision variables as in, e.g., Table 4 of Dey et al. [21].

Table 9 Computational results with instances stratified based on number of variables

General representations with sawtooth bases

The premise of our formulation is that the function \(y=x^2\) can be arbitrarily closely approximated by a series of sawtooth functions. We discuss here if such approximations could conveniently apply to other polynomials.

In [54], the authors present a Fourier series-like method that leverages orthogonal triangular functions to derive a convergent class of \(L_2\)-optimal approximations for general functions on the interval \([-\pi ,\pi ]\). Define the periodic triangular functions

$$\begin{aligned} \begin{array}{rl} X(x) = {\left\{ \begin{array}{ll} \tfrac{\pi ^2 + 2\pi x}{8} &{} -\pi< x + 2\pi k \le 0, k \in {\mathbb {Z}}\\ \tfrac{\pi ^2 - 2\pi x}{8} &{} 0< x + 2\pi k \le \pi , k \in {\mathbb {Z}}\end{array}\right. }\\ Y(x) = {\left\{ \begin{array}{ll} \tfrac{\pi x}{4} &{} -\tfrac{\pi }{2}< x + 2\pi k \le \tfrac{\pi }{2}, k \in {\mathbb {Z}}\\ \tfrac{\pi ^2 - \pi x}{4} &{} \tfrac{\pi }{2} < x + 2\pi k \le \tfrac{3\pi }{2}, k \in {\mathbb {Z}}\end{array}\right. } \end{array} \end{aligned}$$
(60)

The authors then build their orthogonal basis functions using an orthogonal linear transformation of the basis

$$\begin{aligned} 1, X(x), Y(x), X(2x), Y(2x), \dots , X(nx), Y(nx). \end{aligned}$$

However, as with Fourier series approximations, this method has the limitation that all approximating functions are equal at the endpoints of the interval, resulting in a poor approximation for functions at which the endpoints are not equal. Thus, to obtain good approximations for \(x^3\) on \([-\pi ,\pi ]\), we first add the linear function \(-\pi ^2 x\) to enforce equality at the endpoints.

Then, applying this method to \(x^2\) and \(x^3 - \pi ^2 x\) on the interval \(x \in [-\pi ,\pi ]\), we obtain the following numbers for the (\(L_1\)-error). Note that almost all of the Y(nx) functions are relevant for approximating \(x^3 - \pi ^2 x\) (and no X(nx)’s), while only a few X(nx) functions (and no \(Y(nx)'s\)) are relevant for approximating \(x^2\).

Table 10 Comparison of \(L_1\)-error

To investigate the outlook of sparsely approximating \(x^3\) with triangular functions directly, we solved the following MIP to obtain the \(L_1\)-optimal triangular approximation to \(x^3\) on the interval [0, 1] using re-scaled versions of the basis functions above, and explicitly including a linear shift. We discretely approximate the \(L-1\) error via the error at uniformly-spaced points \(x_1, \dots , x_{N_p} \in [0,1]\), allowing the inclusion of only \(N_f\) triangular functions.

$$\begin{aligned} \begin{array}{rrll} \min &{}&{} \tfrac{1}{Np}\sum _{j = 1}^{N_p}t_j \\ s.t. &{} t_j &{}\ge \sum _{i = I}(\lambda _i f_i(x_j) + \lambda _0 x_j + f_c) - x_j^3 &{} \forall j\\ &{} t_j &{}\ge -(\sum _{i \in I}(\lambda _i f_i(x_j) + \lambda _0 x_j + f_c) - x_j^3) &{} \forall j\\ &{} -M \cdot \alpha _i &{}\le \lambda _i \le M \cdot \alpha _i &{} \forall i \ge 1\\ &{} \sum _{i=1}^N \alpha _i &{}\le N_f\\ &{} \lambda _i &{}\in [-M,M] &{} \forall i\\ &{} \alpha _i &{}\in \{0,1\} &{} \forall i \end{array} \end{aligned}$$
(61)

The result, shown in Fig. 4, suggests that it is not possible to use this triangular basis to obtain a similar-quality sparse approximation for \(x^3\) as for \(x^2\): the best achievable error rate for \(x^3\) is roughly \(O(N_f^{-2})\), compared to \(O(2^{-2N_f})\) for the quadratic. See also Table 10 where we compare the convergence of the two approximations.

Fig. 4
figure 4

The \(L_1\)-error of \(x^3\) vs. the number of approximating triangular functions \(N_f\). The equation of the regression line suggests an asymtotic error rate of roughly \(O(N_f^{-2})\), compared to \(O(2^{-2N_f})\) for the quadratic

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beach, B., Hildebrand, R. & Huchette, J. Compact mixed-integer programming formulations in quadratic optimization. J Glob Optim 84, 869–912 (2022). https://doi.org/10.1007/s10898-022-01184-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-022-01184-6

Keywords

Navigation