Skip to main content
Log in

An exact algorithm for constructing minimum Euclidean skeletons of polygons

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

A Euclidean skeleton is a set of edges in the interior (or on the boundary) of a polygon that intersects any line segment that joins two points outside of the polygon and that intersects the polygon. In this paper we study minimum cardinality Euclidean skeletons and develop an algorithm for constructing them. We first prove a number of structural properties of minimum skeletons and use these to develop a canonical form. We then design an exact algorithm which initially generates a set of canonical skeleton edges, then executes a pruning module to reduce the set of candidate edges, and finally runs existing integer linear programming code to output an optimal solution. Finally, we perform computational testing on our algorithm to demonstrate its performance, and observe a number of experimental properties of minimum skeletons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Masehian, E., Amin-Naseri, M.: A Voronoi diagram-visibility graph-potential field compound algorithm for robot path planning. J. Robot. Syst. 21(6), 275–300 (2004)

    Article  Google Scholar 

  2. Ganley, J.L., Cohoon, J.P.: Routing a multi-terminal critical net: Steiner tree construction in the presence of obstacles. In: Proceedings of IEEE International Symposium on Circuits and Systems-ISCAS’94, vol. 1, pp. 113–116. IEEE (1994)

  3. Liu, C.H., Kuo, S.Y., Lee, D., Lin, C.S., Weng, J.H., Yuan, S.Y.: Obstacle-avoiding rectilinear Steiner tree construction: a Steiner-point-based algorithm. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 31(7), 1050–1060 (2012)

    Article  Google Scholar 

  4. Huang, T., Young, E.F.: ObSteiner: an exact algorithm for the construction of rectilinear Steiner minimum trees in the presence of complex rectilinear obstacles. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 32(6), 882–893 (2013)

    Article  Google Scholar 

  5. Müller-Hannemann, M., Tazari, S.: A near linear time approximation scheme for Steiner tree among obstacles in the plane. Comput. Geom. 43(4), 395–409 (2010)

    Article  MathSciNet  Google Scholar 

  6. Huang, T., Young, E.F.: Obstacle-avoiding rectilinear Steiner minimum tree construction: an optimal approach. In: Proceedings of the International Conference on Computer-Aided Design, pp. 610–613. IEEE Press (2010)

  7. Provan, J.S.: An approximation scheme for finding Steiner trees with obstacles. SIAM J. Comput. 17(5), 920–934 (1988)

    Article  MathSciNet  Google Scholar 

  8. Zachariasen, M., Winter, P.: Obstacle-Avoiding Euclidean Steiner trees in the Plane: An Exact Algorithm, pp. 286–299. Springer, Berlin (1999)

    Google Scholar 

  9. Volz, M., Brazil, M., Ras, C., Thomas, D.: Computing skeletons for rectilinearly-convex obstacles in the rectilinear plane. arXiv:2004.04365 (2020)

  10. Provan, J.S., Brazil, M., Thomas, D., Weng, J.F.: Minimum opaque covers for polygonal regions. arXiv:1210.8139 (2012)

  11. Hakimi, S.L.: Steiner’s problem in graphs and its implications. Networks 1, 113–133 (1971)

  12. Zhu, C., Sundaram, G., Snoeyink, J., Mitchell, J.S.: Generating random polygons with given vertices. Comput. Geom. 6(5), 277–290 (1996)

    Article  MathSciNet  Google Scholar 

  13. Lafayette, L., Sauter, G., Vu, L., Meade, B.: Spartan performance and flexibility: an HPC-cloud chimera. OpenStack Summit, Barcelona 27 (2016)

  14. Fischetti, M., Leitner, M., Ljubić, I., Luipersbeck, M., Monaci, M., Resch, M., Salvagnin, D., Sinnl, M.: Thinning out Steiner trees: a node-based model for uniform edge costs. Math. Program. Comput. 9(2), 203–229 (2017)

    Article  MathSciNet  Google Scholar 

  15. Cplex, I.I.: V12.1: User’s manual for CPLEX. Int. Bus. Mach. Corp. 46(53), 157 (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charl Ras.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andrés-Thió, N., Brazil, M., Ras, C. et al. An exact algorithm for constructing minimum Euclidean skeletons of polygons. J Glob Optim 83, 137–162 (2022). https://doi.org/10.1007/s10898-021-01101-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-021-01101-3

Keywords

Mathematics Subject Classification

Navigation