Skip to main content
Log in

Global minimum variance portfolios under uncertainty: a robust optimization approach

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

This paper presents new models which seek to optimize the first and second moments of asset returns without estimating expected returns. Motivated by the stability of optimal solutions computed by optimizing only the second moment and applying the robust optimization methodology which allows to incorporate the uncertainty in the optimization model itself, we extend and combine existing methodologies in order to define a method for computing relative-robust and absolute-robust minimum variance portfolios. For the relative robust strategy, where the maximum regret is minimized, regret is defined as the increase in the investment risk resulting from investing in a given portfolio instead of choosing the optimal portfolio of the realized scenario. The absolute robust strategy which minimizes the maximum risk was applied assuming the worst-case scenario over the whole uncertainty set. Across alternate time windows, results provide new evidence that the proposed robust minimum variance portfolios outperform non-robust portfolios. Whether portfolio measurement is based on return, risk, regret or modified Sharpe ratio, results suggest that the robust methodologies are able to optimize the first and second moments without the need to estimate expected returns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. For further readings about the interactive fuzzy method see Duan and Stahlecker [57] and Kato and Sakawa [58].

  2. In the in-sample analysis the overall in-sample period was used in order to compute estimators for the models.

  3. A portfolio is considered a dominant solution when it presents, simultaneously, higher return and lower risk.

References

  1. Markowitz, H.: Portfolio Selection: Efficient Diversification of Investments. Wiley, New York (1959)

    Google Scholar 

  2. Markowitz, H.: Portfolio selection. J. Finance 7(1), 77–91 (1952)

    Google Scholar 

  3. Best, M.J., Grauer, R.R.: On the sensitivity of mean–variance-efficient portfolios to changes in asset means: some analytical and computational results. Rev. Financ. Stud. 4(2), 315 (1991)

    Google Scholar 

  4. Best, M.J., Grauer, R.R.: Sensitivity analysis for mean–variance portfolio problems. Manage. Sci. 37(8), 980–989 (1991)

    MATH  Google Scholar 

  5. Chopra, V.K., Ziemba, W.T.: The effect of errors in means, variances, and covariances on optimal portfolio choice. J. Portf. Manag. 19(2), 6–11 (1993)

    Google Scholar 

  6. Jagannathan, R., Ma, T.: Risk reduction in large portfolios: why imposing the wrong constraints helps. J. Finance 58(4), 1651–1684 (2003)

    Google Scholar 

  7. Chan, L.K.C., Karceski, J., Lakonishok, J.: On portfolio optimization: forecasting covariances and choosing the risk model. Rev. Financ. Stud. 12(5), 937–974 (1999)

    Google Scholar 

  8. DeMiguel, V., Garlappi, L., Uppal, R.: Optimal versus naive diversification: how inefficient is the 1/N portfolio strategy? Rev. Financ. Stud. 22(5), 1915–1953 (2009)

    Google Scholar 

  9. Supandi, E.D., Rosadi, D.: An empirical comparison between robust estimation and robust optimization to mean–variance portfolio. J. Mod. Appl. Stat. Methods 16(1), 32 (2017)

    Google Scholar 

  10. Fabozzi, F.J., Kolm, P.N., Pachamanova, D., Focardi, S.M.: Robust Portfolio Optimization and Management. Wiley, Hoboken (2007)

    Google Scholar 

  11. Steuer, R.E., Qi, Y., Hirschberger, M.: Portfolio selection in the presence of multiple criteria. In: Zopounidis, C., Doumpos, M., Pardalos, P.M. (eds.) Handbook of Financial Engineering, pp. 3–24. Springer, Boston, MA (2008)

    Google Scholar 

  12. Kolm, P.N., Tütüncü, R., Fabozzi, F.J.: 60 years of portfolio optimization: practical challenges and current trends. Eur. J. Oper. Res. 234(2), 356–371 (2014)

    MathSciNet  MATH  Google Scholar 

  13. Bana e Costa, C., Soares, J.: Multicriteria approaches for portfolio selection: an overview. Rev. Financ. Mark. 4(1), 19–26 (2001)

    Google Scholar 

  14. Zopounidis, C., Doumpos, M.: Multi-criteria decision aid in financial decision making: methodologies and literature review. J. Multi Criteria Decis. Anal. 11(4–5), 167–186 (2002)

    MATH  Google Scholar 

  15. Zopounidis, C., Galariotis, E., Doumpos, M., Sarri, S., Andriosopoulos, K.: Multiple criteria decision aiding for finance: an updated bibliographic survey. Eur. J. Oper. Res. 247(2), 339–348 (2015)

    MathSciNet  MATH  Google Scholar 

  16. Chang, T.-J., Meade, N., Beasley, J.E., Sharaiha, Y.M.: Heuristics for cardinality constrained portfolio optimisation. Comput. Oper. Res. 27(13), 1271–1302 (2000)

    MATH  Google Scholar 

  17. Golmakani, H.R., Fazel, M.: Constrained portfolio selection using particle swarm optimization. Expert Syst. Appl. 38(7), 8327–8335 (2011)

    Google Scholar 

  18. Soleimani, H., Golmakani, H.R., Salimi, M.H.: Markowitz-based portfolio selection with minimum transaction lots, cardinality constraints and regarding sector capitalization using genetic algorithm. Expert Syst. Appl. 36(3), 5058–5063 (2009)

    Google Scholar 

  19. Spronk, J., Hallerbach, W.: Financial modelling: where to go? With an illustration for portfolio management. Eur. J. Oper. Res. 99(1), 113–125 (1997)

    MATH  Google Scholar 

  20. Yu, L., Wang, S., Lai, K.K.: Neural network-based mean–variance–skewness model for portfolio selection. Comput. Oper. Res. 35(1), 34–46 (2008)

    MATH  Google Scholar 

  21. Ehrgott, M., Klamroth, K., Schwehm, C.: An MCDM approach to portfolio optimization. Eur. J. Oper. Res. 155(3), 752–770 (2004)

    MathSciNet  MATH  Google Scholar 

  22. Eichfelder, G.: Adaptive Scalarization Methods in Multiobjective Optimization. Springer, Berlin (2008)

    MATH  Google Scholar 

  23. Azmi, R., Tamiz, M.: A review of goal programming for portfolio selection. In: Jones, D., Tamiz, M., Ries, J. (eds.) New Developments in Multiple Objective and Goal Programming, pp. 15–33. Springer, Berlin (2010)

    Google Scholar 

  24. Chunhachinda, P., Dandapani, K., Hamid, S., Prakash, A.J.: Portfolio selection and skewness: evidence from international stock markets. J. Bank. Finance 21(2), 143–167 (1997)

    Google Scholar 

  25. Aouni, B., Colapinto, C., La Torre, D.: Financial portfolio management through the goal programming model: current state-of-the-art. Eur. J. Oper. Res. 234(2), 536–545 (2014)

    MathSciNet  MATH  Google Scholar 

  26. Steuer, R.E., Na, P.: Multiple criteria decision making combined with finance: a categorized bibliographic study. Eur. J. Oper. Res. 150(3), 496–515 (2003)

    MATH  Google Scholar 

  27. Hauser, R., Krishnamurthy, V., Tütüncü, R.: Relative robust portfolio optimization. arXiv preprint arXiv:1305.0144 (2013)

  28. Gabrel, V., Murat, C., Thiele, A.: Recent advances in robust optimization: an overview. Eur. J. Oper. Res. 235(3), 471–483 (2014)

    MathSciNet  MATH  Google Scholar 

  29. El Ghaoui, L., Lebret, H.: Robust solutions to least-squares problems with uncertain data. SIAM J. Matrix Anal. Appl. 18(4), 1035–1064 (1997)

    MathSciNet  MATH  Google Scholar 

  30. Ben-Tal, A., Nemirovski, A.: Robust convex optimization. Math. Oper. Res. 23(4), 769–805 (1998)

    MathSciNet  MATH  Google Scholar 

  31. Goldfarb, D., Iyengar, G.: Robust portfolio selection problems. Math. Oper. Res. 28(1), 1–38 (2003)

    MathSciNet  MATH  Google Scholar 

  32. Halldórsson, B.V., Tütüncü, R.H.: An interior-point method for a class of saddle-point problems. J. Optim. Theory Appl. 116(3), 559–590 (2003)

    MathSciNet  MATH  Google Scholar 

  33. Natarajan, K., Pachamanova, D., Sim, M.: Constructing risk measures from uncertainty sets. Oper. Res. 57(5), 1129–1141 (2009)

    MathSciNet  MATH  Google Scholar 

  34. Bertsimas, D., Brown, D.B.: Constructing uncertainty sets for robust linear optimization. Oper. Res. 57(6), 1483–1495 (2009)

    MathSciNet  MATH  Google Scholar 

  35. Lu, Z.: A new cone programming approach for robust portfolio selection. Optim. Methods Softw. 26(1), 89–104 (2006)

    Google Scholar 

  36. Lu, Z.: A computational study on robust portfolio selection based on a joint ellipsoidal uncertainty set. Math. Program. 126(1), 193–201 (2011)

    MathSciNet  MATH  Google Scholar 

  37. Roy, B.: Robustness in operational research and decision aiding: a multi-faceted issue. Eur. J. Oper. Res. 200(3), 629–638 (2010)

    MATH  Google Scholar 

  38. Gregory, C., Darby-Dowman, K., Mitra, G.: Robust optimization and portfolio selection: the cost of robustness. Eur. J. Oper. Res. 212(2), 417–428 (2011)

    MathSciNet  MATH  Google Scholar 

  39. Kaläı, R., Lamboray, C., Vanderpooten, D.: Lexicographic α-robustness: an alternative to min–max criteria. Eur. J. Oper. Res. 220(3), 722–728 (2012)

    MathSciNet  MATH  Google Scholar 

  40. Kim, J.H., Kim, W.C., Fabozzi, F.J.: Composition of robust equity portfolios. Finance Res. Lett. 10(2), 72–81 (2013)

    Google Scholar 

  41. Kim, W.C., Kim, J.H., Ahn, S.H., Fabozzi, F.J.: What do robust equity portfolio models really do? Ann. Oper. Res. 205(1), 141–168 (2013)

    MathSciNet  MATH  Google Scholar 

  42. Kim, W.C., Kim, J.H., Fabozzi, F.J.: Deciphering robust portfolios. J. Bank. Finance 45, 1–8 (2014)

    Google Scholar 

  43. Kouvelis, P., Yu, G. (eds.): Robust discrete optimization: past successes and future challenges. In: Robust Discrete Optimization and Its Applications, pp. 333–356. Springer, Boston, MA (1997)

    MATH  Google Scholar 

  44. Cornuejols, G., Tütüncü, R.: Optimization Methods in Finance. Cambridge University Press, Cambridge (2006)

    MATH  Google Scholar 

  45. Hasuike, T., Katagiri, H.: Robust-based interactive portfolio selection problems with an uncertainty set of returns. Fuzzy Optim. Decis. Making 12(3), 263–288 (2013)

    MathSciNet  MATH  Google Scholar 

  46. Fliege, J., Werner, R.: Robust multiobjective optimization & applications in portfolio optimization. Eur. J. Oper. Res. 234(2), 422–433 (2014)

    MathSciNet  MATH  Google Scholar 

  47. Xidonas, P., Mavrotas, G., Hassapis, C., Zopounidis, C.: Robust multiobjective portfolio optimization: a minimax regret approach. Eur. J. Oper. Res. 262(1), 299–305 (2017)

    MathSciNet  MATH  Google Scholar 

  48. Kalayci, C.B., Ertenlice, O., Akyer, H., Aygoren, H.: A review on the current applications of genetic algorithms in mean–variance portfolio optimization. Pamukkale Univers. J. Eng. Sci. 23(4), 470–476 (2017)

    Google Scholar 

  49. Streichert, F., Ulmer, H., Zell, A.: Evolutionary algorithms and the cardinality constrained portfolio optimization problem. In: Operations Research Proceedings 2003. Operations Research Proceedings (GOR (Gesellschaft für Operations Research e.V.)), vol. 2003, pp. 253–260 (2004)

    Google Scholar 

  50. Chang, T.-J., Yang, S.-C., Chang, K.-J.: Portfolio optimization problems in different risk measures using genetic algorithm. Expert Syst. Appl. 36(7), 10529–10537 (2009)

    Google Scholar 

  51. Zhu, H., Wang, Y., Wang, K., Chen, Y.: Particle swarm optimization (PSO) for the constrained portfolio optimization problem. Expert Syst. Appl. 38(8), 10161–10169 (2011)

    Google Scholar 

  52. Blackburn, D.W., Cakici, N.: Overreaction and the cross-section of returns: international evidence. J. Empir. Finance 42, 1–14 (2017)

    Google Scholar 

  53. Jegadeesh, N., Titman, S.: Returns to buying winners and selling losers: implications for stock market efficiency. J. Finance 48(1), 65–91 (1993)

    Google Scholar 

  54. Israelsen, C.L.: A refinement to the Sharpe ratio and information ratio. J. Asset Manag. 5(6), 423–427 (2005)

    Google Scholar 

  55. Chow, T.-M., Hsu, J.C., Kuo, L.-L., Li, F.: A study of low-volatility portfolio construction methods. J. Portf. Manag. 40(4), 89–105 (2014)

    Google Scholar 

  56. Maillet, B., Tokpavi, S., Vaucher, B.: Global minimum variance portfolio optimisation under some model risk: a robust regression-based approach. Eur. J. Oper. Res. 244(1), 289–299 (2015)

    MathSciNet  MATH  Google Scholar 

  57. Duan, L., Stahlecker, P.: A portfolio selection model using fuzzy returns. Fuzzy Optim. Decis. Making 10(2), 167–191 (2011)

    MathSciNet  MATH  Google Scholar 

  58. Kato, K., Sakawa, M.: An interactive fuzzy satisficing method based on variance minimization under expectation constraints for multiobjective stochastic linear programming problems. Soft. Comput. 15(1), 131–138 (2011)

    MATH  Google Scholar 

Download references

Acknowledgements

This study has been funded by national funds, through FCT, Portuguese Science Foundation, under Project UID/Multi/00308/2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra Caçador.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caçador, S., Dias, J.M. & Godinho, P. Global minimum variance portfolios under uncertainty: a robust optimization approach. J Glob Optim 76, 267–293 (2020). https://doi.org/10.1007/s10898-019-00859-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-019-00859-x

Keywords

Navigation