Skip to main content
Log in

The decompositions with respect to two core non-symmetric cones

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

It is known that the analysis to tackle with non-symmetric cone optimization is quite different from the way to deal with symmetric cone optimization due to the discrepancy between these types of cones. However, there are still common concepts for both optimization problems, for example, the decomposition with respect to the given cone, smooth and nonsmooth analysis for the associated conic function, conic-convexity, conic-monotonicity and etc. In this paper, motivated by Chares’s thesis (Cones and interior-point algorithms for structured convex optimization involving powers and exponentials, 2009), we consider the decomposition issue of two core non-symmetric cones, in which two types of decomposition formulae will be proposed, one is adapted from the well-known Moreau decomposition theorem and the other follows from geometry properties of the given cones. As a byproduct, we also establish the conic functions of these cones and generalize the power cone case to its high-dimensional counterpart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. The definition of \({\mathcal {K}}_{\exp }\) used in (2) comes from [5, Section 4.1], which has a slight difference from another form in [34, Definition 2.1.2] as

    $$\begin{aligned} {\mathcal {K}}_{\exp }:=\hbox {cl}\left\{ (x_1,{\bar{x}}) \in {\mathbb {R}}\times {\mathbb {R}}^2\,\bigg |\, x_1\ge {\bar{x}}_2\cdot \hbox {exp} \left( \frac{{\bar{x}}_1}{{\bar{x}}_2}\right) ,\ {\bar{x}}_2>0\right\} . \end{aligned}$$

    However, one can observe that these two definitions coincide with each other.

References

  1. Alizadeh, F., Goldfarb, D.: Second-order cone programming. Math. Program. 95(1), 3–51 (2003)

    MathSciNet  MATH  Google Scholar 

  2. Andersen, E.D., Roos, C., Terlaky, T.: Notes on duality in second order and \(p\)-order cone optimization. Optimization 51(4), 627–643 (2002)

    MathSciNet  MATH  Google Scholar 

  3. Bauschke, H.H., Güler, O., Lewis, A.S., Sendov, H.S.: Hyperbolic polynomials and convex analysis. Can. J. Math. 53, 470–488 (2001)

    MathSciNet  MATH  Google Scholar 

  4. Boyd, S., Kim, S.J., Vandenberghe, L., Hassibi, A.: A tutorial on geometric programming. Optim. Eng. 8, 67–127 (2007)

    MathSciNet  MATH  Google Scholar 

  5. Chares, R.: Cones and interior-point algorithms for structured convex optimization involving powers and exponentials. Ph.D. thesis, UCL-Universite Catholique de Louvain (2009)

  6. Chua, C.B.: A \(t\)-algebraic approach to primal-dual interior-point algorithms. SIAM J. Optim. 20, 503–523 (2009)

    MathSciNet  MATH  Google Scholar 

  7. Chang, Y.L., Yang, C.Y., Chen, J.S.: Smooth and nonsmooth analysis of vector-valued functions associated with circular cones. Nonlinear Anal. 85, 160–173 (2013)

    MathSciNet  MATH  Google Scholar 

  8. Chen, J.S., Chen, X., Tseng, P.: Analysis of nonsmooth vector-valued functions associated with second-order cone. Math. Program. 101(1), 95–117 (2003)

    MathSciNet  MATH  Google Scholar 

  9. Chen, J.S., Pan, S.H.: A entropy-like proximal algorithm and the exponential multiplier method for symmetric cone programming. Comput. Optim. Appl. 47(3), 477–499 (2010)

    MathSciNet  MATH  Google Scholar 

  10. Chen, J.S., Tseng, P.: An unconstrained smooth minimization reformulation of second-order cone complementarity problem. Math. Program. 104(2–3), 293–327 (2005)

    MathSciNet  MATH  Google Scholar 

  11. Chen, J.S.: SOC Functions and Their Applications, Springer Optimization and Its Applications 143. Springer, Singapore (2019)

    Google Scholar 

  12. Ding, C., Sun, D.F., Toh, K.C.: An introduction to a class of matrix cone programming. Math. Program. 144, 141–179 (2014)

    MathSciNet  MATH  Google Scholar 

  13. Dür, M.: Copositive programming-a survey. In: Diehl, M., et al. (eds.) Recent Advances in Optimization and Its Applications in Engineering. Springer, Berlin (2010)

    Google Scholar 

  14. Faraut, U., Korányi, A.: Analysis on Symmetric Cones. University Press, Oxford (1994)

    MATH  Google Scholar 

  15. Fukushima, M., Luo, Z.Q., Tseng, P.: Smoothing functions for second-order-cone complementarity problems. SIAM J. Optim. 12(2), 436–460 (2001)

    MathSciNet  MATH  Google Scholar 

  16. Glineur, F.: An extended conic formulation for geometric optimization. Found. Comput. Decis. Sci. 25, 161–174 (2000)

    MathSciNet  MATH  Google Scholar 

  17. Glineur, F.: Proving strong duality for geometric optimization using a conic formulation. Ann. Oper. Res. 105, 155–184 (2001)

    MathSciNet  MATH  Google Scholar 

  18. Glineur, F., Terlaky, T.: Conic formulation for \(l_{p}\)-norm optimization. J. Optim. Theory Appl. 122, 285–307 (2004)

    MathSciNet  MATH  Google Scholar 

  19. Güler, O.: Hyperbolic polynomials and iterior point methods for convex programming. Math. Oper. Res. 22, 350–377 (1997)

    MathSciNet  MATH  Google Scholar 

  20. Ito, M., Lourenco, B.F.: The \(p\)-cone in dimension \(n \ge 3\) are not homogeneous when \(p \ne 2\). Linear Algebra Appl. 533, 326–335 (2017)

    MathSciNet  MATH  Google Scholar 

  21. Khanh Hien, L.: Differential properties of Euclidean projection onto power cone. Math. Meth. Oper. Res. 82(3), 265–284 (2015)

    MathSciNet  MATH  Google Scholar 

  22. Karimi, M., Tuncel, L.: Primal-dual interior-point methods for domain-driven formulations: algorithms. arXiv preprint arXiv:1804.06925

  23. Lobo, M.S., Vandenberghe, L., Boyd, S., Lebret, H.: Applications of second-order cone programming. Linear Algebra Appl. 284(1–3), 193–228 (1998)

    MathSciNet  MATH  Google Scholar 

  24. Mordukhovich, B.S., Outrata, J.V., Ramiez, C.H.: Second-order variational analysis in conic programming with applications to optimality and stability. SIAM J. Optim. 25(1), 76–101 (2015)

    MathSciNet  MATH  Google Scholar 

  25. Moreau, J.J.: D\(\acute{e}\)composition orthogonale d’un espace hilbertien selon deux c\({\hat{o}}\)nes mutuellement polaires. Comptes Rendus de l’Acad\(\acute{e}\)mie des Sciences 255, 238–240 (1962)

  26. Miao, X.H., Lu, Y., Chen, J.S.: From symmetric cone optimization to nonsymmetric cone optimization: spectral decomposition, nonsmooth analysis, and projections onto nonsymmetric cones. Pac. J. Optim. 14(3), 399–419 (2018)

    MathSciNet  Google Scholar 

  27. Miao, X.H., Qi, N., Chen, J.S.: Projection formula and one type of spectral factorization associated with \(p\)-order cone. J. Nonlinear Convex Anal. 18(9), 1699–1705 (2017)

    MathSciNet  Google Scholar 

  28. Nesterov, Y.: Towards non-symmetric conic optimization. Optim. Methods Softw. 27, 893–917 (2012)

    MathSciNet  MATH  Google Scholar 

  29. Pan, S.H., Chang, Y.L., Chen, J.S.: Stationary point conditions for the FB merit function associated with symmetric cones. Oper. Res. Lett. 38(5), 372–377 (2010)

    MathSciNet  MATH  Google Scholar 

  30. Pan, S.H., Chen, J.S.: An \(R\)-linearly convergent nonmonotone derivative-free method for symmetric cone complementarity problems. Adv. Model. Optim. 13, 185–211 (2011)

    MathSciNet  MATH  Google Scholar 

  31. Peres, Y., Pete, G., Somersille, S.: Biased tug-of-war, the biased infinity Laplacian, and comparison with exponential cones. Calc. Var. 38, 541–564 (2010)

    MathSciNet  MATH  Google Scholar 

  32. Renegar, J.: Hyperbolic program and their derivative relaxations. Found. Comput. Math. 6, 59–79 (2006)

    MathSciNet  MATH  Google Scholar 

  33. Schmieta, S.H., Alizadeh, F.: Extension of primal-dual interior point algorithms to symmetric cones. Math. Program. 96(3), 409–438 (2003)

    MathSciNet  MATH  Google Scholar 

  34. Serrano, S.A.: Algorithms for unsymmetric cone optimization and an implementation for problems with the exponential cone. Ph.D. thesis, Stanford University (2015)

  35. Shapiro, A.: First and second order analysis of nonlinear semidefinite programs. Math. Program. 77(1), 301–320 (1997)

    MathSciNet  MATH  Google Scholar 

  36. Skajaa, A., Ye, Y.Y.: A homogeneous interior-point algorithm for nonsymmetric convex conic optimization. Math. Program 150, 391–422 (2015)

    MathSciNet  MATH  Google Scholar 

  37. Sun, D.F.: The strong second-order sufficient condition and constraint nondegeneracy in nonlinear semidefinite programming and their implications. Math. Oper. Res. 31(4), 761–776 (2006)

    MathSciNet  MATH  Google Scholar 

  38. Sun, D.F., Sun, J.: Löwner’s operator and spectral functions in Euclidean Jordan algebras. Math. Oper. Res. 33(2), 421–445 (2008)

    MathSciNet  MATH  Google Scholar 

  39. Sun, D.F., Sun, J., Zhang, L.W.: The rate of convergence of the augmented Lagrangian method for nonlinear semidefinite programming. Math. Program. 114(2), 349–391 (2008)

    MathSciNet  MATH  Google Scholar 

  40. Tseng, P.: Merit functions for semi-definite complementarity problems. Math. Program. 83(2), 159–185 (1998)

    MathSciNet  MATH  Google Scholar 

  41. Vandenberghe, L., Boyd, S.: Semidefinite programming. SIAM Rev. 38(1), 49–95 (1996)

    MathSciNet  MATH  Google Scholar 

  42. Vinberg, E.B.: The theory of homogeneous convex cones. Trans. Moscow Math. Soc. 12, 340–403 (1963). (English Translation)

    MathSciNet  MATH  Google Scholar 

  43. Wolkowicz, H., Saigal, R., Vandenberghe, L. (eds.): Handbook of Semidefinite Programming. Kluwer Academic, Boston (2000)

    MATH  Google Scholar 

  44. Xue, G.L., Ye, Y.Y.: An efficient algorithm for minimizing a sum of \(p\)-norm. SIAM J. Optim. 10(2), 551–579 (2000)

    MathSciNet  MATH  Google Scholar 

  45. Zhou, J.C., Chen, J.S.: Properties of circular cone and spectral factorization associated with circular cone. J. Nonlinear Convex Anal. 14(4), 807–816 (2013)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first author’s work is supported by National Natural Science Foundation of China (Grant Number 11601389) and Doctoral Foundation of Tianjin Normal University (Grant Number 52XB1513). The third author’s work is supported by Ministry of Science and Technology, Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jein-Shan Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 The concepts of \(\alpha \)-representable and extended \(\alpha \)-representable sets

For a given convex set \({\mathcal {K}}\), it is \(\alpha \)-representable [5, p. 110] if there exist a finite integer M, scalars \(\alpha _i\in [0,1]\), \(i=1,2,\ldots ,M\), vectors \(c_1,c_2,\ldots ,c_M\in {\mathbb {R}}^3\), matrices \(A_1,A_2,\ldots ,A_M\) with three columns and an appropriate number of rows, a matrix \(A_f\) and a vector \(c_f\) such that

$$\begin{aligned} u\in {\mathcal {K}}\ \Leftrightarrow \ c_i-A^T_i\left[ \begin{array}{c} u\\ v \end{array}\right] \in {\mathcal {K}}_{\alpha _i}\ (i=1,2,\ldots ,M),\ A^T_f\left[ \begin{array}{c} u\\ v \end{array}\right] =c_f \end{aligned}$$

for some artificial variables or modelling variables v. Similarly, the set \({\mathcal {K}}\) is extended \(\alpha \)-representable [5, p. 122] if there exist finite integers \(M_1, M_2\), matrices \(A_\alpha ,A_{\exp },A_f\) and vectors \(c_\alpha , c_{\exp }, c_f\) of appropriate sizes such that

$$\begin{aligned} u\in {\mathcal {K}}\ \Leftrightarrow \ c_\alpha -A^T_\alpha \left[ \begin{array}{c} u\\ v \end{array}\right] \in \prod ^{M_1}_{i=1}{\mathcal {K}}_{\alpha _i},\ c_{\exp }-A^T_{\exp }\left[ \begin{array}{c} u\\ v \end{array}\right] \in \prod ^{M_2}_{i=1}{\mathcal {K}}_{\exp },\ A^T_f\left[ \begin{array}{c} u\\ v \end{array}\right] =c_f. \end{aligned}$$

1.2 The decomposition with respect to the circular cone

Consider the circular cone

$$\begin{aligned} {\mathcal {L}}_\theta := \{(x_1,{\bar{x}})\in {\mathbb {R}}\times {\mathbb {R}}^{n-1}\,| \,x_1\tan \theta \ge \Vert {\bar{x}}\Vert \}. \end{aligned}$$

For any given \(z=(z_1,{\bar{z}})\in {\mathbb {R}}\times {\mathbb {R}}^{n-1}\), the projection mappings \(\varPi _{{\mathcal {L}}_\theta }(z), \varPi _{{\mathcal {L}}^\circ _\theta }(z)\) are respectively given by

$$\begin{aligned} \varPi _{{\mathcal {L}}_\theta }(z):=\left\{ \begin{array}{ll} z,&{}\hbox {if}\ z\in {\mathcal {L}}_\theta ,\\ 0,&{}\hbox {if}\ z\in {\mathcal {L}}^\circ _\theta ,\\ u,&{}\hbox {otherwise}, \end{array} \right. \qquad \varPi _{{\mathcal {L}}^\circ _\theta }(z):=\left\{ \begin{array}{ll} 0,&{}\hbox {if}\ z\in {\mathcal {L}}_\theta ,\\ z,&{}\hbox {if}\ z\in {\mathcal {L}}^\circ _\theta ,\\ v,&{}\hbox {otherwise}, \end{array} \right. \end{aligned}$$

where

$$\begin{aligned} u=\left[ \begin{array}{c} \displaystyle \frac{z_1+\Vert z_2\Vert \tan \theta }{1+\tan ^2\theta }\\ \displaystyle \left( \frac{z_1+\Vert z_2\Vert \tan \theta }{1 +\tan ^2\theta }\tan \theta \right) \frac{z_2}{\Vert z_2\Vert } \end{array} \right] ,\qquad v=\left[ \begin{array}{c} \displaystyle \frac{z_1-\Vert z_2\Vert \cot \theta }{1+\cot ^2\theta }\\ \displaystyle \left( \frac{z_1-\Vert z_2\Vert \cot \theta }{1+\cot ^2\theta } \cot \theta \right) \frac{-z_2}{\Vert z_2\Vert } \end{array} \right] . \end{aligned}$$

Combining these results with the Moreau decomposition theorem, the decomposition with respect to \({\mathcal {L}}_\theta \) is

$$\begin{aligned} z={\tilde{\lambda }}_1(z)\cdot {\tilde{u}}^{(1)}_z+{\tilde{\lambda }}_2(z)\cdot {\tilde{u}}^{(2)}_z, \end{aligned}$$
(51)

where

$$\begin{aligned} {\tilde{\lambda }}_1(z):= & {} z_1-\Vert {\bar{z}}\Vert \cot \theta , \qquad \qquad {\tilde{\lambda }}_2(z) :=z_1+\Vert {\bar{z}}\Vert \tan \theta ,\\ {\tilde{u}}^{(1)}_z:= & {} \displaystyle \frac{1}{1+\cot ^2\theta }\left[ \begin{array}{cc} 1 &{}\ 0 \\ 0 &{}\ \cot \theta \cdot I_{n-1} \end{array} \right] \left[ \begin{array}{c} 1 \\ -w \end{array} \right] ,\\ {\tilde{u}}^{(2)}_z:= & {} \displaystyle \frac{1}{1+\tan ^2\theta }\left[ \begin{array}{cc} 1 &{}\ 0 \\ 0 &{}\ \tan \theta \cdot I_{n-1} \end{array} \right] \left[ \begin{array}{c} 1 \\ w \end{array} \right] \end{aligned}$$

with \(w=\frac{{\bar{z}}}{\Vert {\bar{z}}\Vert }\) if \({\bar{x}}\ne 0\) and w is any unit vector in \({\mathbb {R}}^{n-1}\) if \({\bar{x}}=0\) and \(I_{n-1}\) is the identity matrix of order \(n-1\). It is easy to see that

$$\begin{aligned} \varPi _{{\mathcal {L}}_\theta }(z)=\max \{0,{\tilde{\lambda }}_1(z)\}\cdot {\tilde{u}}^{(1)}_z+\max \{0,{\tilde{\lambda }}_2(z)\}\cdot {\tilde{u}}^{(2)}_z. \end{aligned}$$

More properties of the circular cone can be found in [45, Section 3].

1.3 Proof of Lemma 1

By definition, \({\mathcal {K}}_\alpha \) is closed, since the functions \({\bar{x}}^{\alpha _1}_1{\bar{x}}^{\alpha _2}_2\) and \(|x_1|\) are continuous on \({\mathbb {R}}^2_+\) and \({\mathbb {R}}\), respectively. To proof that \({\mathcal {K}}_\alpha \) is a convex cone, we only need to verify that it is closed under the addition and the nonnegative multiplication. For any given \((x_1,{\bar{x}})\in {\mathcal {K}}_\alpha \) and \(\beta \ge 0\), one can obtain that

$$\begin{aligned} (\beta {\bar{x}}_1)^{\alpha _1}(\beta {\bar{x}}_2)^{\alpha _2} =\beta {\bar{x}}_1^{\alpha _1}{\bar{x}}_2^{\alpha _2}\ge \beta |x_1|=|\beta x_1|,\ \beta {\bar{x}}_1\ge 0,\ \beta {\bar{x}}_2\ge 0, \end{aligned}$$

where the first equation uses the fact \(\alpha _1+\alpha _2=1\). Therefore, we have \(\beta (x_1,{\bar{x}})\in {\mathcal {K}}_\alpha \). For any given \((x_1,{\bar{x}}),(y_1,{\bar{y}})\in {\mathcal {K}}_\alpha \), we know

$$\begin{aligned} \begin{array}{lll} |x_1|\le {\bar{x}}^{\alpha _1}_1{\bar{x}}^{\alpha _2}_2,&{}{\bar{x}}_1\ge 0,&{}{\bar{x}}_2\ge 0,\\ |y_1|\le {\bar{y}}^{\alpha _1}_1{\bar{y}}^{\alpha _2}_2,&{}{\bar{y}}_1\ge 0,&{}{\bar{y}}_2\ge 0. \end{array} \end{aligned}$$

It is easy to see that \({\bar{x}}_1+{\bar{y}}_1\ge 0\), \({\bar{x}}_2+{\bar{y}}_2\ge 0\) and \(|x_1+y_1|\le |x_1|+|y_1|\le {\bar{x}}^{\alpha _1}_1{\bar{x}}^{\alpha _2}_2 +{\bar{y}}^{\alpha _1}_1{\bar{y}}^{\alpha _2}_2\). In order to finish our proof, it suffices to show that

$$\begin{aligned} {\bar{x}}^{\alpha _1}_1{\bar{x}}^{\alpha _2}_2+{\bar{y}}^ {\alpha _1}_1{\bar{y}}^{\alpha _2}_2\le ({\bar{x}}_1+{\bar{y}}_1)^{\alpha _1}({\bar{x}}_2+{\bar{y}}_2)^{\alpha _2},\ \forall (x_1,{\bar{x}}),(y_1,{\bar{y}})\in {\mathcal {K}}_\alpha . \end{aligned}$$
(52)

We divide it into the following two cases. Suppose that there exists an index \(i\in \{1,2\}\) such that \({\bar{x}}_i=0\) or \({\bar{y}}_i=0\), it is trivial to show (52). Otherwise, we obtain \({\bar{x}},{\bar{y}}\in {\mathbb {R}}^2_{++}\). Consider the function \(f:{\mathbb {R}}^2_{++}\rightarrow {\mathbb {R}}\):

$$\begin{aligned} f({\bar{x}})={\bar{x}}^{\alpha _1}_1{\bar{x}}^{\alpha _2}_2, \end{aligned}$$

where \({\bar{x}}:=({\bar{x}}_1,{\bar{x}}_2)^T\in {\mathbb {R}}^2\) and \({\bar{x}}_1,{\bar{x}}_2>0\). By calculation, we obtain

$$\begin{aligned} \nabla ^2f({\bar{x}})=\left[ \begin{array}{cc} \alpha _1(\alpha _1-1){\bar{x}}^{\alpha _1-2}_1&{}0\\ 0&{}\alpha _2(\alpha _2-1){\bar{x}}^{\alpha _2-2}_2 \end{array} \right] \end{aligned}$$

Since \(\alpha _i\in (0,1)\) and \({\bar{x}}_i\) is strictly positive, the Hessian matrix \(\nabla ^2f({\bar{x}})\) is negative definite, which shows that f is concave defined on \({\mathbb {R}}^2_{++}\). Therefore, we have

$$\begin{aligned} f\left( \frac{{\bar{x}}+{\bar{y}}}{2}\right) \ge \frac{1}{2}\left( f({\bar{x}})+f({\bar{y}})\right) , \end{aligned}$$

which is equivalent to the above inequality (52). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Y., Yang, CY., Chen, JS. et al. The decompositions with respect to two core non-symmetric cones. J Glob Optim 76, 155–188 (2020). https://doi.org/10.1007/s10898-019-00845-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-019-00845-3

Keywords

Mathematics Subject Classification

Navigation