Skip to main content
Log in

Convexifications of rank-one-based substructures in QCQPs and applications to the pooling problem

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

We study sets defined as the intersection of a rank-one constraint with different choices of linear side constraints. We identify different conditions on the linear side constraints, under which the convex hull of the rank-one set is polyhedral or second-order cone representable. In all these cases, we also show that a linear objective can be optimized in polynomial time over these sets. Towards the application side, we show how these sets relate to commonly occurring substructures of a general quadratically constrained quadratic program. To further illustrate the benefit of studying quadratically constrained quadratic programs from a rank-one perspective, we propose new rank-one formulations for the generalized pooling problem and use our convexification results to obtain several new convex relaxations for the pooling problem. Finally, we run a comprehensive set of computational experiments and show that our convexification results together with discretization significantly help in improving dual bounds for the generalized pooling problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. With some abuse of terminology, we will be referring to matrices whose rank is at most one by simply rank-one matrices.

  2. Boundedness is equivalent to \(A^1_{ij} > 0\) for all \(i\in [n_1],\ j \in [n_2]\).

References

  1. Sherali, H.D., Adams, W.P.: A Reformulation–Linearization Technique for Solving Discrete and Continuous Nonconvex Problems, vol. 31. Springer Science & Business Media, Berlin (2013)

    MATH  Google Scholar 

  2. Lasserre, J.B.: Global optimization with polynomials and the problem of moments. SIAM J. Optim. 11(3), 796–817 (2001)

    Article  MathSciNet  Google Scholar 

  3. Ahmadi, A.A., Majumdar, A.: DSOS and SDSOS optimization: LP and SOCP-based alternatives to sum of squares optimization. In 2014 48th Annual Conference on Information Sciences and Systems (CISS), pp. 1–5. IEEE (2014)

  4. Al-Khayyal, F.A., Falk, J.E.: Jointly constrained biconvex programming. Math. Op. Res. 8(2), 273–286 (1983)

    Article  MathSciNet  Google Scholar 

  5. Ryoo, H.S., Sahinidis, N.V.: Analysis of bounds for multilinear functions. J. Global Optim. 19(4), 403–424 (2001)

    Article  MathSciNet  Google Scholar 

  6. Liberti, L., Pantelides, C.C.: Convex envelopes of monomials of odd degree. J. Global Optim. 25(2), 157–168 (2003)

    Article  MathSciNet  Google Scholar 

  7. Benson, H.P.: Concave envelopes of monomial functions over rectangles. Naval Res. Logist. (NRL) 51(4), 467–476 (2004)

    Article  MathSciNet  Google Scholar 

  8. Meyer, C.A., Floudas, C.A.: Trilinear monomials with mixed sign domains: Facets of the convex and concave envelopes. J. Global Optim. 29(2), 125–155 (2004)

    Article  MathSciNet  Google Scholar 

  9. Belotti, P., Miller, A.J., Namazifar, M.: Valid inequalities and convex hulls for multilinear functions. Electron. Notes Discret. Math. 36, 805–812 (2010)

    Article  Google Scholar 

  10. Bao, X., Khajavirad, A., Sahinidis, N.V., Tawarmalani, M.: Global optimization of nonconvex problems with multilinear intermediates. Math. Program. Comput. 7(1), 1–37 (2015)

    Article  MathSciNet  Google Scholar 

  11. Misener, R., Smadbeck, J.B., Floudas, C.A.: Dynamically generated cutting planes for mixed-integer quadratically constrained quadratic programs and their incorporation into glomiqo 2. Optim. Methods Softw. 30(1), 215–249 (2015)

    Article  MathSciNet  Google Scholar 

  12. Del Pia, A., Khajavirad, A.: A polyhedral study of binary polynomial programs. Math. Op. Res. 42(2), 389–410 (2016)

    MathSciNet  MATH  Google Scholar 

  13. Sherali, H.D.: Convex envelopes of multilinear functions over a unit hypercube and over special discrete sets. Acta Mathematica Vietnamica 22(1), 245–270 (1997)

    MathSciNet  MATH  Google Scholar 

  14. Rikun, A.D.: A convex envelope formula for multilinear functions. J. Global Optim. 10(4), 425–437 (1997). https://doi.org/10.1023/A:1008217604285

    Article  MathSciNet  MATH  Google Scholar 

  15. Meyer, C.A., Floudas, C.A.: Convex envelopes for edge-concave functions. Math. Program. 103(2), 207–224 (2005)

    Article  MathSciNet  Google Scholar 

  16. Tawarmalani, M., Sahinidis, N.V.: Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software, and Applications, vol. 65. Springer Science & Business Media, Berlin (2002)

    Book  Google Scholar 

  17. Tawarmalani, M., Richard, J.P.P., Xiong, C.: Explicit convex and concave envelopes through polyhedral subdivisions. Math. Program. 138, 1–47 (2013)

    Article  MathSciNet  Google Scholar 

  18. Tuy, H.: Convex Analysis and Global Optimization, vol. 110. Springer, Berlin (2016)

    Book  Google Scholar 

  19. Buchheim, C., D’Ambrosio, C.: Monomial-wise optimal separable underestimators for mixed-integer polynomial optimization. J. Global Optim. 67(4), 759–786 (2017)

    Article  MathSciNet  Google Scholar 

  20. Crama, Y., Rodríguez-Heck, E.: A class of valid inequalities for multilinear 0–1 optimization problems. Discret. Optim. 25, 28–47 (2017)

    Article  MathSciNet  Google Scholar 

  21. Adams, W., Gupte, A., Xu, Y.: Error bounds for monomial convexification in polynomial optimization. Math. Program. 175, 355–393 (2018)

    Article  MathSciNet  Google Scholar 

  22. Gupte, A., Kalinowski, T., Rigterink, F., Waterer, H.: Extended formulations for convex hulls of graphs of bilinear functions. arXiv preprint arXiv:1702.04813 (2017)

  23. Nguyen, T.T., Richard, J.-P.P., Tawarmalani, M.: Deriving the convex hull of a polynomial partitioning set through lifting and projection. Technical report, working paper (2013)

  24. Nguyen, T.T., Tawarmalani, M., Richard, J.-P.P.: Convexification techniques for linear complementarity constraints. In IPCO, volume 6655, pp. 336–348. Springer (2011)

  25. Tawarmalani, M., Richard, J.-P.P., Chung, K.: Strong valid inequalities for orthogonal disjunctions and bilinear covering sets. Math. Program. 124(1), 481–512 (2010)

    Article  MathSciNet  Google Scholar 

  26. Gupte, Akshay: Mixed integer bilinear programming with applications to the pooling problem. Ph.D. thesis, Georgia Institute of Technology (2011)

  27. Kocuk, B., Dey, S.S., Sun, X.A.: Matrix minor reformulation and SOCP-based spatial branch-and-cut method for the AC optimal power flow problem. Math. Program. Comput. 10(4), 557–596 (2018)

    Article  MathSciNet  Google Scholar 

  28. Rahman, H., Mahajan, A.: Facets of a mixed-integer bilinear covering set with bounds on variables. arXiv preprint arXiv:1707.06712 (2017)

  29. Davarnia, D., Richard, J.-P.P., Tawarmalani, M.: Simultaneous convexification of bilinear functions over polytopes with application to network interdiction. SIAM J. Optim. 27(3), 1801–1833 (2017)

    Article  MathSciNet  Google Scholar 

  30. Li, O., Vittal, V.: Convex hull of the quadratic branch AC power flow equations and its application in radial distribution networks. IEEE Trans. Power Syst. 33(1), 839–850 (2018). https://doi.org/10.1109/TPWRS.2017.2712697

    Article  Google Scholar 

  31. Burer S., Kılınç-Karzan, F.: How to convexify the intersection of a second order cone and a nonconvex quadratic. Math. Program. 162(1):393–429 (2017). https://doi.org/10.1007/s10107-016-1045-z

  32. Modaresi, S., Vielma, J.P.: Convex hull of two quadratic or a conic quadratic and a quadratic inequality. Math. Program. 164(1–2), 383–409 (2017)

    Article  MathSciNet  Google Scholar 

  33. Dey, S.S., Santana, A., Wang, Y.: New SOCP relaxation and branching rule for bipartite bilinear programs. Optim. Eng. 20, 307–336 (2018)

    Article  MathSciNet  Google Scholar 

  34. Burer, S., Letchford, A.N.: On nonconvex quadratic programming with box constraints. SIAM J. Optim. 20(2), 1073–1089 (2009). https://doi.org/10.1137/080729529

    Article  MathSciNet  MATH  Google Scholar 

  35. Padberg, M.: The boolean quadric polytope: some characteristics, facets and relatives. Math. Program. 45(1–3), 139–172 (1989)

    Article  MathSciNet  Google Scholar 

  36. McCormick, G.P.: Computability of global solutions to factorable nonconvex programs: Part–convex underestimating problems. Math. Program. 10(1), 147–175 (1976)

    Article  Google Scholar 

  37. Bonami, P., Günlük, O., Linderoth, J.: Globally solving nonconvex quadratic programming problems with box constraints via integer programming methods. Math. Program. Comput., 10(3), 333–382 (2018). ISSN 1867–2957. https://doi.org/10.1007/s12532-018-0133-x

  38. Bienstock, D., Chen, C., Munoz, G.: Outer-product-free sets for polynomial optimization and oracle-based cuts. arXiv preprint arXiv:1610.04604 (2016)

  39. Haverly, C.A.: Studies of the behavior of recursion for the pooling problem. ACM sigmap Bull. 25, 19–28 (1978)

    Article  Google Scholar 

  40. Gupte, A., Ahmed, Shabbir, D., Santanu S., Cheon, M.S.: Relaxations and discretizations for the pooling problem. J. Global Optim. 67(3), 631–669 (2017). ISSN 1573-2916. https://doi.org/10.1007/s10898-016-0434-4

  41. Ben-Tal, A., Nemirovski, A.: Lectures on modern convex optimization: analysis, algorithms, and engineering applications. SIAM (2001)

  42. Santana, A., Dey, S.S.: The convex hull of a quadratic constraint over a polytope. arXiv preprint arXiv:1812.10160 (2018)

  43. Misener, R., Thompson, J.P., Floudas, C.A.: Apogee: global optimization of standard, generalized, and extended pooling problems via linear and logarithmic partitioning schemes. Computers and Chemical Engineering, 35(5), 876–892, 2011. ISSN 0098-1354. https://doi.org/10.1016/j.compchemeng.2011.01.026. http://www.sciencedirect.com/science/article/pii/S0098135411000366. Selected Papers from ESCAPE-20 (European Symposium of Computer Aided Process Engineering - 20), 6–9 June (2010), Ischia, Italy

  44. Dey, S.S., Gupte, A.: Analysis of MILP techniques for the pooling problem. Oper. Res. 63(2), 412–427 (2015). https://doi.org/10.1287/opre.2015.1357

    Article  MathSciNet  MATH  Google Scholar 

  45. Alfaki, M., Haugland, D.: A multi-commodity flow formulation for the generalized pooling problem. J. Global Optim. 56(3), 917–937 (2013a)

    Article  MathSciNet  Google Scholar 

  46. Alfaki, M., Haugland, D.: Strong formulations for the pooling problem. J. Global Optim. 56(3), 897–916 (2013b)

    Article  MathSciNet  Google Scholar 

  47. Haugland, D.: The computational complexity of the pooling problem. J. Global Optim. 64(2), 199–215 (2016)

    Article  MathSciNet  Google Scholar 

  48. Luedtke, J., D’Ambrosio, C., Linderoth, J., Schweiger, J.: Strong convex nonlinear relaxations of the pooling problem. arXiv preprint arXiv:1803.02955 (2018)

  49. Haugland, D., Hendrix, E.M.T.: Pooling problems with polynomial-time algorithms. J. Optim. Theory Appl. 170(2), 591–615 (2016)

    Article  MathSciNet  Google Scholar 

  50. Boland, N., Kalinowski, T., Rigterink, F.: A polynomially solvable case of the pooling problem. J. Global Optim. 67(3), 621–630 (2017)

    Article  MathSciNet  Google Scholar 

  51. Baltean-Lugojan, R., Misener, R.: Piecewise parametric structure in the pooling problem: from sparse strongly-polynomial solutions to NP-hardness. J. Global Optim. 71(4), 655–690 (2018)

    Article  MathSciNet  Google Scholar 

  52. Adhya, N., Tawarmalani, M., Sahinidis, N.V.: A Lagrangian approach to the pooling problem. Ind. Eng. Chem. Res. 38(5), 1956–1972 (1999)

    Article  Google Scholar 

  53. Boland, N., Kalinowski, T., Rigterink, F.: New multi-commodity flow formulations for the pooling problem. J. Global Optim. 66(4), 669–710 (2016)

    Article  MathSciNet  Google Scholar 

  54. Boland, N., Kalinowski, T., Rigterink, F., Savelsbergh, M.: A special case of the generalized pooling problem arising in the mining industry. Preprint at http://www.optimization-online.org/DB_HTML/2015/07/5025.html (2015)

  55. Marandi, A., Dahl, J., de Klerk, E.: A numerical evaluation of the bounded degree sum-of-squares hierarchy of lasserre, toh, and yang on the pooling problem. Ann. Oper. Res. 265(1), 67–92 (2018)

    Article  MathSciNet  Google Scholar 

  56. Misener, R., Floudas, C.A.: GloMIQO 2.2 test suite (ares.tamu.edu/glomiqo/test\_suite.html) (2015)

Download references

Acknowledgements

This work was supported by NSF CMMI [Grant Number 1562578]; and the CNPq-Brazil [Grant Number 248941/2013-5]. We thank the referees for their helpful contribution that has significantly improved the quality of the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asteroide Santana.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

A Omitted proofs

1.1 Proof of Part (iii) of Proposition 2

Proposition 9

\(\text {conv} \left( {{\mathcal {U}}}^{\text {row}}_{(n_1,n_2)}(l,u)\right) \) is described by the inequalities (17), (18), (19), and (20).

Proof

We will use Fourier-Motzkin elimination to obtain the convex hull in the original space. Now, we will project the t variables in the order \(t_{n_2}\), \(t_{n_2-1}\), \(t_{n_2 -2}\), ..., \(t_1\).

We claim that after projecting out variables \(t_{n_2}, \dots , t_{n_2 - j}\), the resulting system of the inequalities is:

$$\begin{aligned} 1 - \sum \limits _{p = 1}^{n_2 - (j + 1)} t_p \le&\ \sum \limits _{i \in {\mathcal {I}}} \sum \limits _{k \in T_{i} } \frac{W_{ik}}{l_i}&\forall&(T_1, T_2, \dots , T_ {|{\mathcal {I}}|}) \in {\mathcal {P}}_{|{\mathcal {I}}|}(\{n_2 - j, \dots , n_2\}) \\ 1 - \sum \limits _{p = 1}^{n_2 - (j + 1)} t_p \ge&\ \sum \limits _{i \in [n_1]} \sum \limits _{k \in T_i} \frac{W_{ik}}{u_i}&\forall&(T_1, T_2, \dots , T_ {n_1}) \in {\mathcal {P}}_{n_1}(\{n_2 - j, \dots , n_2\}) \\ u_{i_2}W_{i_1k} \ge&l_{i_1} W_{i_2k}&\forall&i_2 \in [n_1], \forall i_1 \in {\mathcal {I}}, \forall k \in \{n_2 - j, \dots , n_2\} \\ l_it_k \le W_{ik} \le&u_it_k&\forall&i \in [n_1], \forall k \in [n_2 - (j + 1)] \\ t_k \ge&0&\forall&k \in [n_2 - (j + 1)] \\ W_{ij} \ge&0&\forall&i \in [n_1], \forall j \in [n_2 ]. \end{aligned}$$

Base case: After projecting out \(t_{n_2}\), we obtain the system:

$$\begin{aligned} \sum \limits _{j = 1}^{n_2 - 1} t_j \le&\ 1 \end{aligned}$$
(67)
$$\begin{aligned} W_{i n_2} \le&\ (1 - \sum \limits _{j = 1}^{n_2 - 1} t_j)u_i&\forall&i \in [n_1] \end{aligned}$$
(68)
$$\begin{aligned} W_{i n_2} \ge&\ (1 - \sum \limits _{j = 1}^{n_2 - 1} t_j)l_i&\forall&i \in {\mathcal {I}} \nonumber \\ u_{i_2}W_{i_1n_2} \ge&\ l_{i_1} W_{i_2n_2}&\forall&i_2 \in [n_1],\forall i_1 \in {\mathcal {I}} \nonumber \\ l_it_j \le W_{ij} \le&\ u_it_j&\forall&i \in [n_1], \forall j \in [n_2 - 1] \nonumber \\ t_j \ge&\ 0&\forall&j \in [n_2 - 1], \nonumber \\ W_{ij} \ge&\ 0&\forall&i \in [n_1], \forall j \in [n_2 ], \end{aligned}$$
(69)

Note that (68) and (69) imply (67). Therefore the above can be written as:

$$\begin{aligned} (1 - \sum \limits _{j = 1}^{n_2 - 1} t_j) \le&\ \sum \limits _{i \in {\mathcal {I}}} \sum \limits _{k \in T_{i} } \frac{W_{in_2}}{l_i}&\forall&(T_1, T_2, \dots , T_ {|{\mathcal {I}}|}) \in {\mathcal {P}}_{|{\mathcal {I}}|}(\{n_2 \}) \\ (1 - \sum \limits _{j = 1}^{n_2 - 1} t_j) \ge&\ \sum \limits _{i \in [n_1]} \sum \limits _{k \in T_i} \frac{W_{ik}}{u_i}&\forall&(T_1, T_2, \dots , T_ {n_1}) \in {\mathcal {P}}_{n_1}(\{n_2 \}) \\ u_{i_2}W_{i_1n_2} \ge&\ l_{i_1} W_{i_2n_2}&\forall&i_2 \in [n_1], \forall i_1 \in {\mathcal {I}} \\ l_it_j \le W_{ij} \le&\ u_it_j&\forall&i \in [n_1], \forall j \in [n_2 - 1] \\ t_j \ge&\ 0&\forall&j \in [n_2 - 1], \\ W_{ij} \ge&\ 0&\forall&i \in [n_1], \forall j \in [n_2], \end{aligned}$$

proving the base case.

Induction step: After projecting \(t_{n_2}\), \(\dots \), \(t_{n_2 -j}\), by the induction hypothesis we have the following system:

$$\begin{aligned} 1 - \sum \limits _{p = 1}^{n_2 - (j + 2)} t_p - \sum \limits _{i \in {\mathcal {I}}} \sum \limits _{k \in T_{i} } \frac{W_{ik}}{l_i} \le&t_{n_2 - (j +1)}&\forall&(T_1, T_2, \dots , T_ {|{\mathcal {I}}|}) \in {\mathcal {P}}_{|{\mathcal {I}}|}(\{n_2 - j, \dots , n_2\}) \\ \frac{W_{i,n_2 - (j +1)}}{u_i} \le&\ t_{n_2 - (j +1)}&\forall&i \in [n_1] \\ 1 - \sum \limits _{p = 1}^{n_2 - (j + 2)} t_p - \sum \limits _{i \in [n_1]} \sum \limits _{k \in T_i} \frac{W_{ik}}{u_i} \ge&\ t_{n_2 - (j +1)}&\forall&(T_1, T_2, \dots , T_ {n_1}) \in {\mathcal {P}}_{n_1}(\{n_2 - j, \dots , n_2\}) \\ \frac{W_{i,n_2 - (j +1)}}{l_i} \ge&\ t_{n_2 - (j +1)}&\forall&i \in {\mathcal {I}} \\ u_{i_2}W_{i_1k} \ge&\ l_{i_1} W_{i_2k}&\forall&i_2 \in [n_1], \forall i_1 \in {\mathcal {I}},\forall k \in \{n_2 - j, \dots , n_2\} \\ l_it_k \le W_{ik} \le&\ u_it_k&\forall&i \in [n_1], \forall k \in [n_2 - (j + 1)] \\ t_k \ge&\ 0&\forall&k \in [n_2 - (j + 1)] \\ W_{ik} \ge&\ 0&\forall&i \in [n_1], \forall k \in [n_2 ]. \end{aligned}$$

Note that a constraint of the form:

$$\begin{aligned} - \sum \limits _{i \in [n_1]} \sum \limits _{k \in T_i} \frac{W_{ik}}{u_i}\ge - \sum \limits _{i \in {\mathcal {I}}} \sum \limits _{k \in T'_{i} }\frac{W_{ik}}{l_i}, \end{aligned}$$

where \((T_1, T_2 \dots T_ {n_1}) \in {\mathcal {P}}_{n_1}(\{n_2 - j, \dots , n_2\})\) and \((T'_1, T'_2, \dots T'_ {|{\mathcal {I}}|})\in {\mathcal {P}}_ {|{\mathcal {I}}|} (\{n_2 - j, \dots , n_2\})\) is implied by constraints of the form \(u_{i_2}W_{i_1k} \ge l_{i_1} W_{i_2k} \forall i_2 \in [n_1], i_1 \in {\mathcal {I}}, k \in \{n_2 - j, \dots , n_2\}.\) Thus, after projecting \(t_{n_2 - (j +1)}\), we obtain:

$$\begin{aligned} 1 - \sum \limits _{p = 1}^{n_2 - (j + 2)} t_p \le&\ \sum \limits _{i \in {\mathcal {I}}} \sum _{k \in T_{i} } \frac{W_{ik}}{l_i}&\forall&(T_1, T_2, \dots , T_ {|{\mathcal {I}}|}) \in {\mathcal {P}}_ {|{\mathcal {I}}|}( \{n_2 - (j +1), \dots , n_2\} ) \\ 1 - \sum _{p = 1}^{n_2 - (j + 2)} t_p \ge&\ \sum _{i \in [n_1]} \sum _{k \in T_i} \frac{W_{ik}}{u_i}&\forall&(T_1, T_2, \dots , T_ {n_1}) \in {\mathcal {P}}_{n_1} (\{n_2 - (j +1), \dots , n_2\}) \\ u_{i_2}W_{i_1k} \ge&\ l_{i_1} W_{i_2k}&\forall&i_2 \in [n_1], \forall i_1 \in {\mathcal {I}}, \forall k \in \{n_2 - (j + 1), \dots , n_2\} \\ l_it_k \le W_{ik} \le&\ u_it_k&\forall&i \in [n_1], \forall k \in [n_2 - (j + 2)] \\ t_k \ge&\ 0&\forall&k \in [n_2 - (j + 2)] \\ W_{ik} \ge&\ 0&\forall&i \in [n_1], \forall k \in [n_2 ]. \end{aligned}$$

It is straightforward now to see that after all t variables are projected, we obtain the result. \(\square \)

Proposition 10

The inequalities in (17) can be separated in polynomial-time.

Proof

For a given matrix \({{\hat{W}}}\), let us define an index \(j_{\text {row}}\) for each index \(j \in [n_2]\) as

$$\begin{aligned} j_{\text {row}}:= \min \left( \mathop {{{\,\mathrm{argmax}\,}}}\limits _{i =1,\dots ,n_1} \left\{ \frac{{{\hat{W}}}_{ij}}{u_i} \right\} \right) . \end{aligned}$$
(70)

Here we are breaking ties arbitrarily using the smallest index, when necessary. Then, we define a partition \(T_1^*,\dots ,T_{n_1}^*\) of the set \( [n_2]\) as

$$\begin{aligned} T_i^* := \{j \,|\, j_{\text {row}} = i\} . \end{aligned}$$

Let

$$\begin{aligned} \theta := \sum _{i=1}^{n_1}\sum _{j \in T_i^*} \frac{{{\hat{W}}}_{ij}}{u_i}. \end{aligned}$$

If \(\theta >1\), then a violated inequality is discovered. Otherwise, we conclude that \({{\hat{W}}}\) satisfies all the inequalities in (17) (by construction, the partition \(T_1^*, \dots , T_{n_1}^*\) corresponds to the inequality with the largest deviation, if one exists). Finally, we note that the complexity of this separation routine is \({\mathcal {O}}(n_1n_2)\) since we need to find the maximum of \(n_1\) numbers \(n_2\) times to construct this partition. \(\square \)

Proposition 11

The inequalities in (18) can be separated in polynomial-time.

Proof

The proof is similar to the proof of Proposition 10. \(\square \)

1.2 Proof of Part (ii) Proposition 3

Proposition 12

\(\text {conv} \left( {{\mathcal {U}}}^{\text {row+}}_{(n_1,n_2)}(l,u, L, U)\right) \) is described by the inequalities (30), (31), (19), and (20).

Proof

We will use Fourier-Motzkin elimination to obtain the convex hull in the original space. Now, we will project the t variables in the order \(t_{n_2}\), \(t_{n_2-1}\), \(t_{n_2 -2}\), ..., \(t_1\).

We claim that after projecting out variables \(t_{n_2}, \dots , t_{n_2 - j}\), the resulting system of the inequalities is:

$$\begin{aligned} 1 - \sum _{p = 1}^{n_2 - (j + 1)} t_p \le&\ \sum _{i \in {\mathcal {I}}} \sum _{k \in T_{i} } \frac{W_{ik}}{l_i} + \frac{1}{L} \sum _{i = 1}^{n_1}\sum _{k \in T_0} W_{ik}&\forall&(T_0, T_1, \dots , T_ {|{\mathcal {I}}|}) \in {\mathcal {P}}_{|{\mathcal {I}}|+1}(\{n_2 - j, \dots , n_2\}) \\ 1 - \sum _{p = 1}^{n_2 - (j + 1)} t_p \ge&\ \sum _{i \in [n_1]} \sum _{k \in T_i} \frac{W_{ik}}{u_i} + \frac{1}{U} \sum _{i = 1}^{n_1}\sum _{k \in T_0} W_{ik}&\forall&(T_0, T_1, \dots , T_ {n_1}) \in {\mathcal {P}}_{n_1+1}(\{n_2 - j, \dots , n_2\}) \\ u_{i_2}W_{i_1k} \ge&l_{i_1} W_{i_2k}&\forall&i_2 \in [n_1], \forall i_1 \in {\mathcal {I}}, \forall k \in \{n_2 - j, \dots , n_2\} \\ l_it_k \le W_{ik} \le&u_it_k&\forall&i \in [n_1], \forall k \in [n_2 - (j + 1)] \\ L t_k \le \sum _{i=1}^{n_1}W_{i k} \le&\ U t_k&\forall&k \in [n_2- (j + 1)] \\ t_k \ge&0&\forall&k \in [n_2 - (j + 1)] \\ W_{ik} \ge&0&\forall&i \in [n_1], \forall k\in [n_2 ]. \end{aligned}$$

Base case: After projecting out \(t_{n_2}\), we obtain the system:

$$\begin{aligned} \sum _{j = 1}^{n_2 - 1} t_j \le&\ 1 \end{aligned}$$
(71)
$$\begin{aligned} W_{i n_2} \le&\ (1 - \sum _{j = 1}^{n_2 - 1} t_j)u_i&\forall&i \in [n_1] \end{aligned}$$
(72)
$$\begin{aligned} W_{i n_2} \ge&\ (1 - \sum _{j = 1}^{n_2 - 1} t_j)l_i&\forall&i \in {\mathcal {I}} \nonumber \\ \sum _{i=1}^{n_1}W_{i n_2} \le&\ (1 - \sum _{j = 1}^{n_2 - 1} t_j)U \ \nonumber \\ \sum _{i=1}^{n_1}W_{i n_2} \ge&\ (1 - \sum _{j = 1}^{n_2 - 1} t_j)L \ \nonumber \\ u_{i_2}W_{i_1n_2} \ge&\ l_{i_1} W_{i_2n_2}&\forall&i_2 \in [n_1],\forall i_1 \in {\mathcal {I}} \nonumber \\ l_it_j \le W_{ij} \le&\ u_it_j&\forall&i \in [n_1], \forall j \in [n_2 - 1] \nonumber \\ L t_j \le \sum _{i=1}^{n_1}W_{i j} \le&\ U t_j&\forall&j \in [n_2-1] \nonumber \\ t_j \ge&\ 0&\forall&j \in [n_2 - 1], \nonumber \\ W_{ij} \ge&\ 0&\forall&i \in [n_1], \forall j \in [n_2 ], \end{aligned}$$
(73)

Note that (72) and (73) imply (71). Therefore the above can be written as:

$$\begin{aligned} (1 - \sum _{j = 1}^{n_2 - 1} t_j) \le&\ \sum _{i \in {\mathcal {I}}} \sum _{k \in T_{i} } \frac{W_{in_2}}{l_i} + \frac{1}{L} \sum _{i = 1}^{n_1}\sum _{k \in T_0} W_{ik}&\forall&(T_0, T_1, \dots , T_ {|{\mathcal {I}}|}) \in {\mathcal {P}}_{|{\mathcal {I}}|+1}(\{n_2 \}) \\ (1 - \sum _{j = 1}^{n_2 - 1} t_j) \ge&\ \sum _{i \in [n_1]} \sum _{k \in T_i} \frac{W_{ik}}{u_i} + \frac{1}{U} \sum _{i = 1}^{n_1}\sum _{k \in T_0} W_{ik}&\forall&(T_0, T_1, \dots , T_ {n_1}) \in {\mathcal {P}}_{n_1+1}(\{n_2 \}) \\ u_{i_2}W_{i_1n_2} \ge&\ l_{i_1} W_{i_2n_2}&\forall&i_2 \in [n_1], \forall i_1 \in {\mathcal {I}} \\ l_it_j \le W_{ij} \le&\ u_it_j&\forall&i \in [n_1], \forall j \in [n_2 - 1] \\ L t_j \le \sum _{i=1}^{n_1}W_{i j} \le&\ U t_j&\forall&j \in [n_2-1] \\ t_j \ge&\ 0&\forall&j \in [n_2 - 1], \\ W_{ij} \ge&\ 0&\forall&i \in [n_1], \forall j \in [n_2], \end{aligned}$$

proving the base case.

Induction step: After projecting \(t_{n_2}\), \(\dots \), \(t_{n_2 -j}\), by the induction hypothesis we have the following system:

$$\begin{aligned} 1 - \sum _{p = 1}^{n_2 - (j + 2)} t_p - \sum _{i \in {\mathcal {I}}} \sum _{k \in T_{i} } \frac{W_{ik}}{l_i} - \frac{1}{L} \sum _{i = 1}^{n_1}\sum _{k \in T_0} W_{ik} \le&\ t_{n_2 - (j +1)}&\forall&(T_0, \dots , T_ {|{\mathcal {I}}|})\\ \in {\mathcal {P}}_{|{\mathcal {I}}|+1}(\{n_2 - j, \dots , n_2\}) \\ \frac{W_{i,n_2 - (j +1)}}{u_i} \le&\ t_{n_2 - (j +1)}&\forall&i \in [n_1] \\ \frac{1}{U}\sum _{i=1}^{n_1} {W_{i,n_2 - (j +1)}} \le&\ t_{n_2 - (j +1)}&\forall&i \in [n_1] \\ 1 - \sum _{p = 1}^{n_2 - (j + 2)} t_p - \sum _{i \in [n_1]} \sum _{k \in T_i} \frac{W_{ik}}{u_i} - \frac{1}{U} \sum _{i = 1}^{n_1}\sum _{k \in T_0} W_{ik} \ge&\ t_{n_2 - (j +1)}&\forall&(T_0, \dots , T_ {n_1}) \in {\mathcal {P}}_{n_1+1}(\{n_2 - j, \dots , n_2\}) \\ \frac{W_{i,n_2 - (j +1)}}{l_i} \ge&\ t_{n_2 - (j +1)}&\forall&i \in {\mathcal {I}} \\ \frac{1}{L}\sum _{i=1}^{n_1} {W_{i,n_2 - (j +1)}} \ge&\ t_{n_2 - (j +1)}&\forall&i \in [n_1] \\ u_{i_2}W_{i_1k} \ge&\ l_{i_1} W_{i_2k}&\forall&i_2 \in [n_1], \forall i_1 \in {\mathcal {I}},\forall k \in \{n_2 - j, \dots , n_2\} \\ l_it_k \le W_{ik} \le&\ u_it_k&\forall&i \in [n_1], \forall k \in [n_2 - (j + 1)] \\ L t_j \le \sum _{i=1}^{n_1}W_{i j} \le&\ U t_j&\forall&j \in [n_2-(j + 1)] \\ t_k \ge&\ 0&\forall&k \in [n_2 - (j + 1)] \\ W_{ik} \ge&\ 0&\forall&i \in [n_1], \forall k \in [n_2 ]. \end{aligned}$$

Note that a constraint of the form:

$$\begin{aligned} - \sum _{i \in [n_1]} \sum _{k \in T_i} \frac{W_{ik}}{u_i} - \frac{1}{U} \sum _{i \in [n_1]} \sum _{k \in T_0} {W_{ik}} \ge - \sum _{i \in {\mathcal {I}}} \sum _{k \in T'_{i} }\frac{W_{ik}}{l_i} - \frac{1}{L} \sum _{i \in {\mathcal {I}}} \sum _{k \in T_0} {W_{ik}} , \end{aligned}$$

where \((T_0, T_1{, \dots ,} T_ {n_1}) \in {\mathcal {P}}_{n_1+1}(\{n_2 - j, \dots , n_2\})\) and \((T'_0, T'_1, {\dots ,} T'_ {|{\mathcal {I}}|})\in {\mathcal {P}}_ {{|{\mathcal {I}}|+1}} (\{n_2 - j, \dots , n_2\})\) is implied by constraints of the form \(u_{i_2}W_{i_1k} \ge l_{i_1} W_{i_2k} \forall i_2 \in [n_1], i_1 \in {\mathcal {I}}, k \in \{n_2 - j, \dots , n_2\}\), and the fact that \(L \le U\). Thus, after projecting \(t_{n_2 - (j +1)}\), we obtain:

$$\begin{aligned} 1 - \sum _{p = 1}^{n_2 - (j + 2)} t_p \le&\ \sum _{i \in {\mathcal {I}}} \sum _{k \in T_{i} } \frac{W_{ik}}{l_i} + \frac{1}{L} \sum _{i \in {\mathcal {I}}} \sum _{k \in T_{0} } {W_{ik}}&\forall&(T_0, T_1, \dots , T_ {|{\mathcal {I}}|}) \in {\mathcal {P}}_ {|{\mathcal {I}}|+1}( \{n_2 - (j +1), \dots , n_2\} ) \\ 1 - \sum _{p = 1}^{n_2 - (j + 2)} t_p \ge&\ \sum _{i \in [n_1]} \sum _{k \in T_i} \frac{W_{ik}}{u_i} + \frac{1}{U} \sum _{i \in {\mathcal {I}}} \sum _{k \in T_{0} } {W_{ik}}&\forall&(T_0, T_1, \dots , T_ {n_1}) \in {\mathcal {P}}_{n_1+1} (\{n_2 - (j +1), \dots , n_2\}) \\ u_{i_2}W_{i_1k} \ge&\ l_{i_1} W_{i_2k}&\forall&i_2 \in [n_1], \forall i_1 \in {\mathcal {I}}, \forall k \in \{n_2 - (j + 1), \dots , n_2\} \\ l_it_k \le W_{ik} \le&\ u_it_k&\forall&i \in [n_1], \forall k \in [n_2 - (j + 2)] \\ L t_k \le \sum _{i=1}^{n_1} W_{ik} \le&\ U t_k&\forall&k \in [n_2 - (j + 2)] \\ t_k \ge&\ 0&\forall&k \in [n_2 - (j + 2)] \\ W_{ik} \ge&\ 0&\forall&i \in [n_1], \forall k \in [n_2 ]. \end{aligned}$$

It is straightforward now to see that after all t variables are projected, we obtain the result. \(\square \)

Proposition 13

The inequalities in (30) can be separated in polynomial-time.

Proof

For a given matrix \({{\hat{W}}}\), let us define an index \(j_{\text {row+}}\) for each index \(j \in \{1,\dots ,n_2\}\) as

$$\begin{aligned} j_{\text {row+}} := {\left\{ \begin{array}{ll} 0 &{} \text { if } \frac{1}{U} \sum _{i=1}^{n_1} {{\hat{W}}}_{ij} \ge \max _{i =1,\dots ,n_1} \left\{ \frac{{{\hat{W}}}_{ij}}{u_i} \right\} \\ j_{\text {row}} &{} \text { otherwise} \end{array}\right. }, \end{aligned}$$

where \(j_{\text {row}}\) is defined according to (70).

Then, we define a partition \(T_0^*, T_1^*,\dots ,T_{n_1}^*\) of the set \( [n_2]\) as

$$\begin{aligned} T_i^* := \{j \,|\, j_{\text {row+}}= i\} . \end{aligned}$$

Let

$$\begin{aligned} \theta := \sum _{i=1}^{n_1}\sum _{j \in T_i^*} \frac{{{\hat{W}}}_{ij}}{u_i} + \frac{1}{U} \sum _{i = 1}^{n_1}\sum _{j \in T_0^*} {{\hat{W}}}_{ij} . \end{aligned}$$

If \(\theta >1\), then a violated inequality is discovered. Otherwise, we conclude that \({{\hat{W}}}\) satisfies all the inequalities in (30) (by construction, the partition \(T_0^*, T_1^*, \dots , T_m^*\) corresponds to the inequality with the largest deviation, if one exists). Finally, we note that the complexity of this separation routine is again \({\mathcal {O}}(n_1n_2)\). \(\square \)

Proposition 14

The inequalities in (31) can be separated in polynomial-time.

Proof

The proof is similar to the proof of Proposition 13. \(\square \)

1.3 Proof of Theorem 4

The proof of SOC-representability follows due to [42] as the convex hull of a set described by the quadratic constraint \(W_{11} W_{22} = W_{21} W_{12}\) and bound constraints is SOCr.

We next present an example where the convex hull of \({{\mathcal {U}}}^{\text {row}}_{(2,2)}(l,u) \cap {{\mathcal {U}}}^{\text {col}}_{(2,2)}(l,u)\) is not polyhedral.

Proposition 15

A point of the form:

$$\begin{aligned} \left[ \begin{array}{cc} \frac{a^2}{1 -a} &{} a \\ a &{} 1-a \end{array}\right] , \end{aligned}$$

for \(a \in [0,\frac{1}{2}]\) is an extreme point of the set \({{\mathcal {U}}}^{\text {row}}_{(2,2)}(l,u) \cap {{\mathcal {U}}}^{\text {col}}_{(2,2)}(l,u)\) where \(l = (0,1)\) and \(u= (1,1)\).

Proof

Clearly the point is feasible. Also if it is not extreme, then it should be possible to write \((a, \frac{a^2}{1 - a}) \in {\mathbb {R}}^2\) as a convex combination of points of the form \((a_i, \frac{a_i^2}{1 - a_i}) \in {\mathbb {R}}^2\) with \(a_i \in [0,\frac{1}{2}]\setminus \{a\}\). However, since \(f(u) = \frac{u^2}{1 -u}\) is a strictly convex function, this is not possible (this is because, for example, \(f(u) > \frac{a^2}{1 - a} + \left( \frac{1}{(1-a)^2} - 1\right) (u - a) \) for all \(u \ne a\), while \(f(u) = \frac{a^2}{1 - a} + \left( \frac{1}{(1-a)^2} - 1\right) (u - a) \) for \(u = a\)). \(\square \)

B Instance description

In Tables 11, 1213, and 14, AIL denotes the subset of arcs \(A \cap (I\times L)\). The sets ALLALJ, and AIJ are defined analogously. The column Avg. Size\(x^s\) (resp. Avg. Size\(x^t\)) displays the average size, over all pools \(i\in L\), of the variable matrices \([x^s_{ij}]_{(s,j)}\) (resp. \([x^t_{ij}]_{(i,t)}\)) for each instance.

Table 11 Mining instances description
Table 12 Literature instances description
Table 13 Random instances description
Table 14 DeyGupte4 instance description

C Detailed results for discretization restrictions

In Tables 15161718, we report the primal bounds obtained via discretization for Random instances with discretization levels \(H=1,2,4,5\), respectively (\(H=3\) is reported in Table 2).

Table 15 Primal bounds via discretization for Random instances with \(H=1\)
Table 16 Primal bounds via discretization for Random instances with \(H=2\)
Table 17 Primal bounds via discretization for Random instances with \(H=4\)
Table 18 Primal bounds via discretization for Random instances with \(H=5\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dey, S.S., Kocuk, B. & Santana, A. Convexifications of rank-one-based substructures in QCQPs and applications to the pooling problem. J Glob Optim 77, 227–272 (2020). https://doi.org/10.1007/s10898-019-00844-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-019-00844-4

Navigation