Skip to main content
Log in

A simplicial homology algorithm for Lipschitz optimisation

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

The simplicial homology global optimisation (SHGO) algorithm is a general purpose global optimisation algorithm based on applications of simplicial integral homology and combinatorial topology. SHGO approximates the homology groups of a complex built on a hypersurface homeomorphic to a complex on the objective function. This provides both approximations of locally convex subdomains in the search space through Sperner’s lemma and a useful visual tool for characterising and efficiently solving higher dimensional black and grey box optimisation problems. This complex is built up using sampling points within the feasible search space as vertices. The algorithm is specialised in finding all the local minima of an objective function with expensive function evaluations efficiently which is especially suitable to applications such as energy landscape exploration. SHGO was initially developed as an improvement on the topographical global optimisation (TGO) method. It is proven that the SHGO algorithm will always outperform TGO on function evaluations if the objective function is Lipschitz smooth. In this paper SHGO is applied to non-convex problems with linear and box constraints with bounds placed on the variables. Numerical experiments on linearly constrained test problems show that SHGO gives competitive results compared to TGO and the recently developed Lc-DISIMPL algorithm as well as the PSwarm, LGO and DIRECT-L1 algorithms. Furthermore SHGO is compared with the TGO, basinhopping (BH) and differential evolution (DE) global optimisation algorithms over a large selection of black-box problems with bounds placed on the variables from the SciPy benchmarking test suite. A Python implementation of the SHGO and TGO algorithms published under a MIT license can be found from https://bitbucket.org/upiamcompthermo/shgo/.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. Not necessarily total function evaluations since starting points closer to the local minima may provide better performance for a given local minimisation routines.

References

  1. Adorio, E.P., Dilman, U.P.: MVF - Multivariate test functions library in C for unconstrained global optimization (2005). http://www.geocities.ws/eadorio/mvf.pdf. Accessed Sept 2016

  2. Antonov, I.A., Saleev, V.M.: An economic method of computing LP-sequences. USSR Comput. Math. Math. Phys. 19, 252–256 (1979)

    Article  MATH  Google Scholar 

  3. Atanassov, K.: On sperner’s lemma. Studia Scientiarum Mathematicarum Hungarica 32(1), 71–74 (1996)

    MathSciNet  MATH  Google Scholar 

  4. Barber, C.B., Dobkin, D.P.: The quickhull algorithm for convex hulls. ACM Trans. Math. Softw. 22(4), 469–483 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bigoni, D.: UQToolbox 1.0.3 tools for uncertainty quantification (2016). https://pypi.python.org/pypi/UQToolbox. Accessed Dec 2016

  6. Brouwer, L.E.J.: Über Abbildung von Mannigfaltigkeiten. Math. Ann 71(1), 97–115 (1911). https://doi.org/10.1007/BF01456931

    Article  MathSciNet  MATH  Google Scholar 

  7. Crane, M.D.P.S.Keenan, de Goes, Fernando: Digital geometry processing with discrete exterior calculus. In: ACM SIGGRAPH 2013 courses, SIGGRAPH ’13. ACM, New York, NY, USA (2013)

  8. De Loera, J.A., Peterson, E., Edward Su, F.: A Polytopal generalization of Sperner’s lemma. J. Comb. Theory Ser. A 100(1):1–26 (2002). URL http://linkinghub.elsevier.com/retrieve/pii/S0097316502932747

  9. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91(2), 201–213 (2002). https://doi.org/10.1007/s101070100263. ISSN 1436-4646

    Article  MathSciNet  MATH  Google Scholar 

  10. Eilenberg, S., Steenrod, N.: Foundations of algebraic topology. Math. Rev. (MathSciNet): MR14: 398b Zentralblatt MATH, Princeton, vol. 47 (1952)

  11. Endres, S.: SHGO: Python implementation of the simplicial homology global optimisation algorithm (2016). URL https://bitbucket.org/upiamcompthermo/shgo. Accessed 11 April 2016

  12. Endres, S.: TGO: Python implementation of the topograhphical global optimisation algorithm (2016). URL https://bitbucket.org/account/user/upiamcompthermo/projects/TGO. Accessed 11 April 2016

  13. Finkel, D.E.: Direct Optimization Algorithm User Guide, vol. 2. Center for Research in Scientific Computation, North Carolina State University, Raleigh (2003)

    Google Scholar 

  14. Gavana, A.: Global optimization benchmarks and AMPGO (2016). http://infinity77.net/global_optimization/index.html. Accessed Sept 2016

  15. Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002). ISBN 0-521-79160-X; 0-521-79540-0

    MATH  Google Scholar 

  16. Henderson, N., de Sá Rêgo, M., Imbiriba, J.: Topographical global initialization for finding all solutions of nonlinear systems with constraints. Appl. Numer. Math. 112:155–166 (2017). URL http://www.sciencedirect.com/science/article/pii/S016892741630201X

  17. Henderson, N., de Sá Rêgo, M., Sacco, W.F., Rodrigues, R.A.: A new look at the topographical global optimization method and its application to the phase stability analysis of mixtures. Chem. Eng. Sci. 127:151–174 (2015). URL http://linkinghub.elsevier.com/retrieve/pii/S0009250915000494

  18. Henle, M.: A combinatorial introduction to topology. Unabriged Dover (1994) republication of the edition published by WH Greeman & Company, San Francisco (1979)

  19. Herskovits, J.: Feasible direction interior-point technique. J. Optim. Theory Appl. 99(1), 121–146 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  20. Huyer, W., Neumaier, A.: Global optimization by multilevel coordinate search. J. Global Optim. 14(4), 331–355 (1999). https://doi.org/10.1023/A:1008382309369. ISSN 1573-2916

    Article  MathSciNet  MATH  Google Scholar 

  21. Jamil, M., Yang, X.-S.: A literature survey of benchmark functions for global optimization problems. Int. J. Math. Modell. Numer. Optim. 4(2), 150–194 (2013)

    MATH  Google Scholar 

  22. Jones, E., Oliphant, T., Peterson, P., et al.: SciPy: Open source scientific tools for Python (2001). URL http://www.scipy.org/. Accessed 11 April 2016

  23. Jones, D.R., Perttunen, C.D., Stuckman, B.E.: Lipschitzian optimization without the lipschitz constant. J. Optim. Theory Appl. 79(1), 157–181 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kraft, D.: A software package for sequential quadratic programming. Technical Report DFVLR-FB 88-28, Institut fuer Dynamik der Flugsysteme, Oberpfaffenhofen (1988)

  25. Kraft, D.: Algorithm 733: TOMP-Fortran modules for optimal control calculations. ACM Trans. Math. Softw. 20(3), 262–281 (1994)

    Article  MATH  Google Scholar 

  26. Kuipers, L., Niederreiter, H.: Uniform distribution of sequences. In: Pure and Applied Mathematics, pp. 384–398. Wiley, New York (1974)

  27. Li, Z., Scheraga, H.A.: Monte carlo-minimization approach to the multiple-minima problem in protein folding. Proc. Nat. Acad. Sci. 84(19), 6611–6615 (1987)

    Article  MathSciNet  Google Scholar 

  28. Meunier, F.: Sperner labellings: A combinatorial approach. J. Comb. Theory Ser. A 113(7), 1462–1475 (2006). https://doi.org/10.1016/j.jcta.2006.01.006. URL http://www.sciencedirect.com/science/article/pii/S0097316506000094

  29. Mishra, S.K.: Global optimization by differential evolution and particle swarm methods evaluation on some benchmark functions (2006). http://dx.doi.org/10.2139/ssrn.933827. Accessed Sept 2016

  30. Mishra, S.: Some new test functions for global optimization and performance of repulsive particle swarm method, (2007). URL http://mpra.ub.uni-muenchen.de/2718/. http://mpra.ub.uni-muenchen.de/2718/. Accessed Sept 2016

  31. Musin, O.R.: Extensions of Sperner and Tucker’s lemma. J. Comb. Theory Ser. A 132, 172–187 (2015). https://doi.org/10.1016/j.jcta.2014.12.001

    Article  MathSciNet  MATH  Google Scholar 

  32. NIST. NIST StRD Nonlinear Regression Problems (2016). http://www.itl.nist.gov/div898/strd/nls/nls_main.shtml. Accessed Sept 2016

  33. Paulavičius, R., Žilinskas, J.: Simplicial lipschitz optimization without the lipschitz constant. J. Global Optim. 59(1), 23–40 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Paulavičius, R., Žilinskas, J.: Simplicial Global Optimization. Springer, New York (2014)

    Book  MATH  Google Scholar 

  35. Paulavičius, R., Žilinskas, J.: Advantages of simplicial partitioning for lipschitz optimization problems with linear constraints. Optim. Lett. 10(2), 237–246 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  36. Paulavičius, R., Sergeyev, Y.D., Kvasov, D.E., Žilinskas, J.: Globally-biased disimpl algorithm for expensive global optimization. J. Global Optim. 59(2), 545–567 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  37. Pintér, J.D.: LGO—a program system for continuous and Lipschitz global optimization, pp. 183–197. Springer US, Boston, MA (1997). ISBN 978-1-4757-2600-8. https://doi.org/10.1007/978-1-4757-2600-8_12

  38. Rios, L.M., Sahinidis, N.V.: Derivative-free optimization: a review of algorithms and comparison of software implementations. J. Global Optim. 56(3), 1247–1293 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  39. Shan, S., Wang, G.G.: Survey of modeling and optimization strategies to solve high-dimensional design problems with computationally-expensive black-box functions. Struct. Multidiscip. Optim. 41(2), 219–241 (2010). https://doi.org/10.1007/s00158-009-0420-2

    Article  MathSciNet  MATH  Google Scholar 

  40. Sobol, I.M.: The distribution of points in a cube and the approximate evaluation of integrals. USSR Comput. Math. Math. Phys. 7, 86–112 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  41. Sperner, E.: Neuer beweis für die invarianz der dimensionszahl und des gebietes. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 6(1), 265 (1928)

    Article  MathSciNet  MATH  Google Scholar 

  42. Storn, R., Price, K.: Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997). https://doi.org/10.1023/A:1008202821328

    Article  MathSciNet  MATH  Google Scholar 

  43. Törn, A., Viitanen, S.: Iterative topographical global optimization, pp 353–363. Springer US, Boston, MA (1996). ISBN 978-1-4613-3437-8. http://dx.doi.org/10.1007/978-1-4613-3437-8_22

  44. Törn, A.: Clustering methods in global optimization. In: Preprints of the Second IFAC Symposium on Stochastic Control, Sopron, Hungary, Part 2, pp138–143 (1986)

  45. Törn, A.: Topographical global optimization. Reports on Computer Science and Mathematics, No 199 (1990)

  46. Törn, A., Viitanen, S.: Topographical Global Optimization, (in Recent Advances in Global Optimization), pp. 384–398. Princeton University Press, Princeton, NJ (1992)

    MATH  Google Scholar 

  47. Vaz, A.I., Vicente, L.N.: Pswarm: a hybrid solver for linearly constrained global derivative-free optimization. Optim. Methods Softw. 24(4–5), 669–685 (2009). https://doi.org/10.1080/10556780902909948

    Article  MathSciNet  MATH  Google Scholar 

  48. Wales, D.: Energy Landscapes: Applications to Clusters, Biomolecules and Glasses. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  49. Wales, D.J.: Perspective: insight into reaction coordinates and dynamics from the potential energy landscape. J. Chem. Phys. 142(13), 130901 (2015)

    Article  Google Scholar 

  50. Wales, D.J., Doye, J.P.: Global optimization by basin-hopping and the lowest energy structures of lennard-jones clusters containing up to 110 atoms. J. Phys. Chem. A 101(28), 5111–5116 (1997)

    Article  Google Scholar 

  51. Wales, D.J., Scheraga, H.A.: Global optimization of clusters, crystals, and biomolecules. Science 285(5432), 1368–1372 (1999)

    Article  Google Scholar 

  52. Zhang, H., Rangaiah, G.P.: A review on global optimization methods for phase equilibrium modeling and calculations. The Open Thermodyn. J. 5, 71–92 (2011)

    Article  Google Scholar 

  53. Žilinskas, J.: Branch and bound with simplicial partitions for global optimization. Math. Modell. Anal. 13(1), 145–159 (2008). https://doi.org/10.3846/1392-6292.2008.13.145-159

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would also like to extend our gratitude to the anonymous reviewers and the editor whose detailed reports and suggestions helped to improve the paper.

Funding

The financial assistance of the National Research Foundation (NRF) towards this research is hereby acknowledged. Opinions expressed and conclusions arrived at, are those of the authors and are not necessarily to be attributed to the NRF. (NRF Grant Number 92781 Competitive Programme for Rated Researchers (Grant Holder WW Focke)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan C. Endres.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 100 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Endres, S.C., Sandrock, C. & Focke, W.W. A simplicial homology algorithm for Lipschitz optimisation. J Glob Optim 72, 181–217 (2018). https://doi.org/10.1007/s10898-018-0645-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-018-0645-y

Keywords

Mathematics Subject Classification

Navigation