Skip to main content
Log in

On branching-point selection for trilinear monomials in spatial branch-and-bound: the hull relaxation

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

In Speakman and Lee (Math Oper Res 42(4):1230–1253, 2017), we analytically developed the idea of using volume as a measure for comparing relaxations in the context of spatial branch-and-bound. Specifically, for trilinear monomials, we analytically compared the three possible “double-McCormick relaxations” with the tight convex-hull relaxation. Here, again using volume as a measure, for the convex-hull relaxation of trilinear monomials, we establish simple rules for determining the optimal branching variable and optimal branching point. Additionally, we compare our results with current software practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Private communication with Ruth Misener.

  2. Private communication with Nick Sahinidis.

References

  1. Achterberg, T.: Scip: solving constraint integer programs. Math. Program. Comput. 1(1), 1–41 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Adjiman, C., Dallwig, S., Floudas, C., Neumaier, A.: A global optimization method, \(\alpha \)BB, for general twice-differentiable constrained NLPs: I. Theoretical advances. Comput. Chem. Eng. 22(9), 1137–1158 (1998)

    Article  Google Scholar 

  3. Agarwal, S., Nadeem, A.: Branch and bound algorithm with implementation of ooOPS. IOSR J. Math. 4(4), 22–26 (2012)

    Article  Google Scholar 

  4. Belotti, P., Lee, J., Liberti, L., Margot, F., Wächter, A.: Branching and bounds tightening techniques for non-convex MINLP. Optim. Methods Softw. 24(4–5), 597–634 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cafieri, S., Lee, J., Liberti, L.: On convex relaxations of quadrilinear terms. J. Global Optim. 47, 661–685 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Epperly, T., Swaney, R.: Branch and bound for global NLP: iterative LP algorithm anf results. In: Grossmann, I.E. (ed.) Global Optimization in Engineering Design, Nonconvex Optimization and its Applications, vol. 9, p. 41. Springer, New York (1996)

    Google Scholar 

  7. Epperly, T.G.W.: Global Optimization of Nonconvex Nonlinear Programs Using Parallel Branch and Bound. Ph.D. thesis, The University of Wisconsin, Madison (1995)

  8. Jach, M., Michaels, D., Weismantel, R.: The convex envelope of (n-1)-convex functions. SIAM J. Optim. 19(3), 1451–1466 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Land, A.H.: A problem of assignment with inter-related costs. Oper. Res. Q. 14(2), 185–199 (1963)

    Article  Google Scholar 

  10. Land, A.H., Doig, A.G.: An automatic method of solving discrete programming problems. Econometrica 28, 497–520 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lee, J.: Mixed integer nonlinear programming: some modeling and solution issues. IBM J. Res. Dev. 51(3/4), 489–497 (2007)

    Article  Google Scholar 

  12. Maranas, C., Floudas, C.: Finding all solutions of nonlinearly constrained systems of equations. J. Global Optim. 7, 143–182 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  13. McCormick, G.: Computability of global solutions to factorable nonconvex programs: part I. Convex underestimating problems. Math. Program. 10, 147–175 (1976)

    Article  MATH  Google Scholar 

  14. Meyer, C., Floudas, C.: Trilinear monomials with mixed sign domains: facets of the convex and concave envelopes. J. Global Optim. 29, 125–155 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Meyer, C., Floudas, C.: Trilinear monomials with positive or negative domains: facets of the convex and concave envelopes. In: Floudas, C.A., Pardalos, P.M. (eds.) Frontiers in Global Optimization, pp. 327–352. Kluwer Academic Publishers (2004)

  16. Misener, R., Floudas, C.: GloMIQO: global mixed-integer quadratic optimizer. J. Global Optim. 57(1), 3–50 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Misener, R., Floudas, C.: Antigone: algorithms for continuous/integer global optimization of nonlinear equations. J. Global Optim. 59, 503–526 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Rikun, A.: A convex envelope formula for multilinear functions. J. Global Optim. 10, 425–437 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ryoo, H., Sahinidis, N.: A branch-and-reduce approach to global optimization. J. Global Optim. 8(2), 107–138 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  20. Sahinidis, N.V.: Baron: a general purpose global optimization software package. J. Global Optim. 8(2), 201–205 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  21. Sherali, H.D., Alameddine, A.: An explicit characterization of the convex envelope of a bivariate bilinear function over special polytopes. Ann. Oper. Res. 25, 197–209 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  22. Smith, E., Pantelides, C.: A symbolic reformulation/spatial branch-and-bound algorithm for the global optimisation of nonconvex MINLPs. Comput. Chem. Eng. 23, 457–478 (1999)

    Article  Google Scholar 

  23. Speakman, E., Lee, J.: On sBB branching for trilinear monomials. In: Rocha A., Costa, M., Fernandes, E.(eds.) Proceedings of the XIII Global Optimization Workshop (GOW16), pp. 81–84 (2016)

  24. Speakman, E., Lee, J.: Quantifying double McCormick. Math. Oper. Res. 42(4), 1230–1253 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Speakman, E., Yu, H., Lee, J.: Experimental validation of volume-based comparison for double McCormick. To appear in: The proceedings of the Fourteenth International Conference on Integration of Artificial Intelligence and Operations Research Techniques in Constraint Programming (CPAIOR) (2017)

  26. Speakman, E.E.: Volumetric Guidance for Handling Triple Products in Spatial Branch-and-Bound. Ph.D. thesis, University of Michigan (2017)

  27. Tawarmalani, M., Sahinidis, N.: Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software and Applications, Nonconvex Optimization and Its Applications, vol. 65. Kluwer Academic Publishers, Dordrecht (2002)

    MATH  Google Scholar 

  28. Vigerske, S., Gleixner, A.: SCIP: Global Optimization of Mixed-Integer Nonlinear Programs in a Branch-and-Cut Framework. Technical Report. 16-24, ZIB, Takustr.7, 14195 Berlin (2016)

Download references

Acknowledgements

This work was supported in part by ONR Grant Nos. N00014-14-1-0315 and N00014-17-1-2296. The authors gratefully acknowledge conversations with Ruth Misener and Nick Sahinidis concerning how branching points are selected in \(\texttt {ANTIGONE}\) and \(\texttt {BARON}\).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emily Speakman.

Additional information

This work extends and presents parts of the first author’s doctoral dissertation [26], and it corrects results first announced in the short abstract [23].

Appendix: technical propositions and lemmas

Appendix: technical propositions and lemmas

In this section, we provide the technical propositions and lemmas used for our analysis.

Proposition 1

Given that the upper- and lower-bound parameters respect the labeling \(\Omega \), and \(\frac{b_1a_2}{b_2} \le \frac{a_1b_2}{a_2}\),

$$\begin{aligned} V_1(q_1) \le V_2\left( \frac{a_1b_2}{a_2}\right) = V_3\left( \frac{a_1b_2}{a_2}\right) . \end{aligned}$$

Proof

It is easy to check that \(V_2\left( \frac{a_1b_2}{a_2}\right) = V_3\left( \frac{a_1b_2}{a_2}\right) \).

$$\begin{aligned} V_2\left( \frac{a_1b_2}{a_2}\right) - V_1(q_1) = \frac{(b_3-a_3)(b_2-a_2)}{48(4b_2b_3-a_2b_3-3a_2a_3)a_2^2} \times \left( pa_1^2 + qa_1 + r \right) , \end{aligned}$$

where

$$\begin{aligned} p&=\,\left( -3a_2a_3-a_2b_3+b_2a_3+3b_2b_3\right) \\&\quad \times \Big (-3a_2^3a_3-a_2^3b_3+13a_2^2b_2a_3 +7a_2^2b_2b_3-12a_2b_2^2a_3-20a_2b_2^2b_3+16b_2^3b_3\Big )\\&=\,\Big (3(b_2b_3-a_2a_3)+b_2a_3-a_2b_3\Big ) \\&\quad \times \left( (-3a_2^3+13a_2^2b_2-12a_2b_2^2)a_3 + (-a_2^3+7a_2^2b_2-20a_2b_2^2+16b_2^3)b_3\right) ,\\ q&=\,4a_2b_1(2a_2^2a_3-3a_2b_2a_3-3a_2b_2b_3+4b_2^2b_3)\times (3a_2a_3+a_2b_3-b_2a_3-3b_2b_3),\\ r&=\,4a_2^2b_1^2(a_2a_3+a_2b_3-2b_2b_3)^2. \end{aligned}$$

To show that \(V_2\left( \frac{a_1b_2}{a_2}\right) - V_1(q_1)\) is non-negative for all parameters satisfying \(\Omega \), we will show that \(pa_1^2 + qa_1 + r \ge 0\) for all parameters satisfying \(\Omega \).

We observe:

$$\begin{aligned} \Big ((-a_2^3+7a_2^2b_2-20a_2b_2^2+16b_2^3)b_3 + (-3a_2^3+13a_2^2b_2-12a_2b_2^2)a_3\Big ) =:b_3Y + a_3Z, \end{aligned}$$

where

$$\begin{aligned} Y + Z = 4(b_2-a_2)(2b_2-a_2)^2 \ge 0, \end{aligned}$$

and

$$\begin{aligned} Y = \bigg (b_2-a_2\bigg )\bigg (4b_2(b_2-a_2)+12b_2^2+a_2^2\bigg ) + 2a_2^2b_2 \ge 0. \end{aligned}$$

Therefore, by Lemma 6 we have that \(b_3Y + a_3Z\) is non-negative and so p is non-negative (Lemma 5). From this we know that \(pa_1^2 + qa_1 + r\) is a convex function in \(a_1\) and we can find the minimizer by setting the derivative to zero and solving for \(a_1\). The minimum occurs at

$$\begin{aligned} a_1 = \frac{2b_1a_2(2a_2^2a_3-3a_2b_2a_3-3a_2b_2b_3+4b_2^2b_3)}{(-3a_2^3a_3-a_2^3b_3+13a_2^2b_2a_3+7a_2^2b_2b_3-12a_2b_2^2a_3 -20a_2b_2^2b_3+16b_2^3b_3)}. \end{aligned}$$

Substituting this in to \(pa_1^2 + qa_1 + r\), we obtain that the minimum value of this quadratic is:

$$\begin{aligned} \frac{4a_2^2b_1^2(b_3-a_3)(b_2-a_2)^3(3a_2a_3+a_2b_3-4b_2b_3)^2}{(-3a_2^3a_3-a_2^3b_3+13a_2^2b_2a_3+7a_2^2b_2b_3-12a_2b_2^2a_3 -20a_2b_2^2b_3+16b_2^3b_3)}. \end{aligned}$$

In demonstrating the non-negativity of p, we have already shown that the denominator is non-negative, and it is easy to see that the numerator is non-negative for all values of the parameters satisfying \(\Omega \). Therefore \(pa_1^2 + qa_1 + r \ge 0\), and consequently, \(V_2\left( \frac{a_1b_2}{a_2}\right) - V_1(q_1) \ge 0\) as required. \(\square \)

Lemma 1

Given that the upper- and lower-bound parameters respect the labeling \(\Omega \), and \(\frac{b_1a_2}{b_2} \le \frac{a_1b_2}{a_2}\),

$$\begin{aligned} V_1\left( \frac{b_1a_2}{b_2}\right) =V_2\left( \frac{b_1a_2}{b_2}\right) \ge V_2\left( \frac{a_1b_2}{a_2}\right) = V_3\left( \frac{a_1b_2}{a_2}\right) \end{aligned}$$

Proof

It is easy to check that \(V_1\left( \frac{b_1a_2}{b_2}\right) =V_2\left( \frac{b_1a_2}{b_2}\right) \) and \(V_2\left( \frac{a_1b_2}{a_2}\right) = V_3\left( \frac{a_1b_2}{a_2}\right) \).

Furthermore,

$$\begin{aligned}&V_2\left( \frac{b_1a_2}{b_2}\right) -V_2\left( \frac{a_1b_2}{a_2}\right) \\&\quad =\frac{(b_3-a_3)(b_2-a_2)^2(b_1a_2-a_1b_2)(a_1b_2^2-a_2^2b_1)(3(b_2b_3-a_2a_3) +b_2a_3-a_2b_3)}{12a_2^2b_2^2}\\&\quad \ge 0, \end{aligned}$$

as required. \(\square \)

Proposition 2

Given that the upper- and lower-bound parameters respect the labeling \(\Omega \), and \(\frac{b_1a_2}{b_2} > \frac{a_1b_2}{a_2}\),

$$\begin{aligned} V_1(q_1) \le V_4\left( \frac{b_1a_2}{b_2}\right) = V_3\left( \frac{b_1a_2}{b_2}\right) . \end{aligned}$$

Proof

It is easy to check that \(V_4\left( \frac{b_1a_2}{b_2}\right) = V_3\left( \frac{b_1a_2}{b_2}\right) \).

$$\begin{aligned} V_4\left( \frac{b_1a_2}{b_2}\right) - V_1(q_1) = \frac{(b_3-a_3)(b_2-a_2)}{48(4b_2b_3-a_2b_3-3a_2a_3)b_2^2} \times \left( pa_1^2 + qa_1 + r \right) , \end{aligned}$$

where

$$\begin{aligned} p&=b_2^2\left( 5b_2b_3-b_2a_3-a_2b_3-3a_2a_3\right) ^2,\\ q&=8b_1b_2\left( 6a_2^2a_3+2a_2^2b_3-3a_2b_2a_3 -9a_2b_2b_3+b_2^2a_3+3b_2^2b_3\right) (b_2b_3-a_2a_3),\\ r&=16b_1^2\left( -3a_2^3a_3-a_2^3b_3+3a_2^2b_2a_3 +5a_2^2b_2b_3-a_2b_2^2a_3-4a_2b_2^2b_3+b_2^3b_3\right) (b_2b_3-a_2a_3). \end{aligned}$$

To show this is non-negative for all parameters satisfying \(\Omega \), we will show \(pa_1^2 + qa_1 + r \ge 0\) for all parameters satisfying \(\Omega \).

Firstly, we observe that

$$\begin{aligned} p=b_2^2(5b_2b_3-b_2a_3-a_2b_3-3a_2a_3)^2 \ge 0. \end{aligned}$$

From this we know that \(pa_1^2 + qa_1 + r\) is a convex function in \(a_1\), and we can find the minimizer by setting the derivative to zero and solving for \(a_1\). The minimum occurs at

$$\begin{aligned} a_1 = \frac{4b_1(6a_2^2a_3+2a_2^2b_3-3a_2b_2a_3-9a_2b_2b_3 +b_2^2a_3+3b_2^2b_3)(a_2a_3-b_2b_3)}{b_2(3a_2a_3+a_2b_3+b_2a_3-5b_2b_3)^2}. \end{aligned}$$

Substituting this in to \(pa_1^2 + qa_1 + r\), we obtain that the minimum value of this quadratic is:

$$\begin{aligned} \frac{16b_1^2(b_3-a_3)(b_2-a_2)^3(b_2b_3-a_2a_3)(3a_2a_3+a_2b_3-4b_2b_3)^2}{(3a_2a_3+a_2b_3+b_2a_3-5b_2b_3)^2}, \end{aligned}$$

which is non-negative for all parameters satisfying \(\Omega \). Therefore \(pa_1^2 + qa_1 + r \ge 0\), and consequently, \(V_4\left( \frac{b_1a_2}{b_2}\right) - V_1(q_1) \ge 0\), as required. \(\square \)

Lemma 2

Given that the upper- and lower-bound parameters respect the labeling \(\Omega \), and \(\frac{b_1a_2}{b_2} > \frac{a_1b_2}{a_2}\),

$$\begin{aligned} V_1\left( \frac{a_1b_2}{a_2}\right) =V_4\left( \frac{a_1b_2}{a_2}\right) \ge V_4\left( \frac{b_1a_2}{b_2}\right) = V_3\left( \frac{b_1a_2}{b_2}\right) . \end{aligned}$$

Proof

It is easy to check that \(V_1\left( \frac{a_1b_2}{a_2}\right) =V_4\left( \frac{a_1b_2}{a_2}\right) \) and \(V_4\left( \frac{b_1a_2}{b_2}\right) = V_3\left( \frac{b_1a_2}{b_2}\right) \).

Furthermore,

$$\begin{aligned}&V_4\left( \frac{a_1b_2}{a_2}\right) -V_4\left( \frac{b_1a_2}{b_2}\right) \\&\quad = \frac{(b_3-a_3)(b_2-a_2)^2(b_1a_2^2-a_1b_2^2)(b_1a_2-a_1b_2)(b_2b_3-a_2a_3)}{3a_2^2b_2^2} \ge 0, \end{aligned}$$

as required. \(\square \)

Lemma 3

Given that the parameters satisfy the conditions \(\Omega \), and furthermore, \(\frac{b_1a_2}{b_2} \le \frac{a_1b_2}{a_2}\), we have

$$\begin{aligned} q_1 \ge \frac{b_1a_2}{b_2}. \end{aligned}$$

Proof

From the proof of Theorem 4, we know that the midpoint, \(q_2\), cannot be less than both \(\frac{a_1b_2}{b_1}\) and \(\frac{b_1a_2}{b_2}\). Therefore we have:

$$\begin{aligned} q_2 \ge \min \left\{ \frac{a_1b_2}{b_1},\frac{b_1a_2}{b_2}\right\} , \end{aligned}$$

and because we saw in (10) that \(q_1 \ge q_2\) we also have

$$\begin{aligned} q_1 \ge \min \left\{ \frac{a_1b_2}{b_1},\frac{b_1a_2}{b_2}\right\} . \end{aligned}$$

Therefore, under the conditions of the lemma, \(q_1 \ge \frac{b_1a_2}{b_2}\) as required. \(\square \)

Lemma 4

Given that the parameters satisfy the conditions \(\Omega \), and furthermore, \(\frac{b_1a_2}{b_2} \ge \frac{a_1b_2}{a_2}\), we have

$$\begin{aligned} q_1 \ge \frac{a_1b_2}{a_2}. \end{aligned}$$

Proof

We saw in the proof of Lemma 3 that

$$\begin{aligned} q_1 \ge \min \left\{ \frac{a_1b_2}{b_1},\frac{b_1a_2}{b_2}\right\} . \end{aligned}$$

Therefore, under the conditions of the lemma, \(q_1 \ge \frac{a_1b_2}{a_2}\) as required. \(\square \)

For completeness, we state and give proofs of two very simple lemmas (from [24]) which we used several times.

Lemma 5

(Lemma 10.1 in [24] ) For all choices of parameters \(0\le a_i < b_i\) satisfying \(\Omega \), we have: \(b_1a_2-a_1b_2\ge 0\), \(b_1a_3-a_1b_3 \ge 0\) and \(b_2a_3-a_2b_3 \ge 0\).

Proof

\((b_3-a_3)(b_1a_2-a_1b_2) = b_1a_2b_3 + a_1b_2a_3 - a_1b_2b_3 -b_1a_2a_3 \ge 0\) by \(\Omega \). This implies \(b_1a_2-a_1b_2 \ge 0\), because \(b_3-a_3 > 0\). \(b_1a_3-a_1b_3 \ge 0\) and \(b_2a_3-a_2b_3 \ge 0\) follow from \(\Omega \) in a similar way. \(\square \)

Lemma 6

(Lemma 10.4 in [24] ) Let \(A,B,C,D \in \mathbb {R}\) with \(A \ge B\ge 0\), \(C+D \ge 0\), \(C \ge 0\). Then \(AC+BD \ge 0\).

Proof

\(AC+BD \ge B(C+D) \ge 0\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Speakman, E., Lee, J. On branching-point selection for trilinear monomials in spatial branch-and-bound: the hull relaxation. J Glob Optim 72, 129–153 (2018). https://doi.org/10.1007/s10898-018-0620-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-018-0620-7

Keywords

Mathematics Subject Classification

Navigation