Skip to main content

Advertisement

Log in

A sparse enhanced indexation model with chance and cardinality constraints

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

Enhanced indexation aims to construct a portfolio to track and outperform the performance of a stock market index by employing both passive and active fund management strategies. This paper presents a novel sparse enhanced indexation model with chance and cardinality constraints. Its goal is to maximize the excess return that can be attained with a high probability, while the model allows a fund manger to limit the number of stocks in the portfolio and specify the maximum tolerable relative market risk. In particular, we model the asset returns as random variables and estimate their probability distributions by the Capital Asset Pricing Model or Fama-French 3-factor model, and measure the relative market risk with the coherent semideviation risk function. We deal with the chance constraint via distributionally robust approach and present a second-order cone programming and a semidefinite programming safe approximation for the model under different sets of potential distribution functions. A hybrid genetic algorithm is applied to solve the NP-hard problem. Numerical tests are conducted on the real data sets from major international stock markets, including USA, UK, Germany and China. The results demonstrate that the proposed model and the method can efficiently solve the enhanced indexation problem and our approach can generally achieve sparse tracking portfolios with good out-of-sample excess returns and high robustness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gilli, M., Kellezi, E.: The threshold accepting heuristic for index tracking. Financ. Eng. E-Commer. Supply Chain 1–18 (2002)

  2. Beasley, J.E., Meade, N., Chang, T.J.: An evolutionary heuristic for the index tracking problem. Eur. J. Oper. Res. 148(3), 621–643 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Dose, C., Cincotti, S.: Clustering of financial time series with application to index and enhanced index tracking portfolio. Phys. A Stat. Mech. Appl. 355(1), 145–151 (2005)

    Article  MathSciNet  Google Scholar 

  4. Fang, Y., Wang, S.Y.: A Fuzzy Index Tracking Portfolio Selection Model. Computational Science—ICCS 2005. Springer, Berlin (2005)

    Google Scholar 

  5. Alexander, C., Dimitriu, A.: Indexing and statistical arbitrage. J. Portf. Manag. 31(2), 50–63 (2005)

    Article  Google Scholar 

  6. Wu, L.C., Chou, S.C., Yang, C.C., et al.: Enhanced index investing based on goal programming. J. Portf. Manag. 33(3), 49–56 (2007)

    Article  Google Scholar 

  7. Ling, A., Sun, J., Yang, X.: Robust tracking error portfolio selection with worst-case downside risk measures. J. Econ. Dyn. Control 39, 178–207 (2014)

    Article  MathSciNet  Google Scholar 

  8. Xu, F., Xu, Z., Xue, H.: Sparse index tracking: an \(l_{1/2}\) regularization based model and solution. http://gr.xjtu.edu.cn/LiferayFCKeditor/UserFiles/File/NewAOR.pdf (2015)

  9. Canakgoz, N.A., Beasley, J.E.: Mixed-integer programming approaches for index tracking and enhanced indexation. Eur. J. Oper. Res. 196(1), 384–399 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Li, Q., Sun, L., Bao, L.: Enhanced index tracking based on multi-objective immune algorithm. Expert Syst. Appl. 38(5), 6101–6106 (2011)

    Article  Google Scholar 

  11. Lejeune, M.A.: Game theoretical approach for reliable enhanced indexation. Decis. Anal. 9(2), 146–155 (2012)

    Article  MathSciNet  Google Scholar 

  12. Lejeune, M.A., Samatli-Pac, G.: Construction of risk-averse enhanced index funds. INFORMS J. Comput. 25(4), 701–719 (2012)

    Article  MathSciNet  Google Scholar 

  13. Guastaroba, G., Speranza, M.G.: Kernel search: an application to the index tracking problem. Eur. J. Oper. Res. 217(1), 54–68 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Roman, D., Mitra, G., Zverovich, V.: Enhanced indexation based on second-order stochastic dominance. Eur. J. Oper. Res. 228(1), 273–281 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Mezali, H., Beasley, J.E.: Quantile regression for index tracking and enhanced indexation. J. Oper. Res. Soc. 64(11), 1676–1692 (2013)

    Article  Google Scholar 

  16. DiBartolomeo, D.: The Enhanced Index Fund as an Alternative to Indexed Equity Management. Northfield Information Services, Boston (2000)

    Google Scholar 

  17. Sun, H., Xu, H., Meskarian, R., et al.: Exact penalization, level function method and modified cutting-plane method for stochastic programs with second order stochastic dominance constraints. Siam J. Optim. 23(1), 602–631 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Charnes, A., Cooper, W.W.: Chance-constrained programming. Manag. Sci. 6(1), 73–79 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  19. Charnes, A., Cooper, W.W.: Deterministic equivalents for optimizing and satisficing under chance constraints. Oper. Res. 11(1), 18–39 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  20. Miller, B.L., Wagner, H.M.: Chance constrained programming with joint constraints. Oper. Res. 13(6), 930–945 (1965)

    Article  MATH  Google Scholar 

  21. Goicoechea, A., Duckstein, L.: Nonnormal deterministic equivalents and a transformation in stochastic mathematical programming. Appl. Math. Comput. 21(1), 51–72 (1987)

    MathSciNet  MATH  Google Scholar 

  22. Calafiore, G.C., El Ghaoui, L.: On distributionally robust chance-constrained linear programs. J. Optim. Theory Appl. 130(1), 1–22 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zymler, S., Kuhn, D., Rustem, B.: Distributionally robust joint chance constraints with second-order moment information. Math. Program. 137(1–2), 167–198 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wu, C., Xu, D., Zhang, J.: Safe approximations for distributionally robust joint chance constrained program. Asia Pac. J. Oper. Res. 32(1), 1540004 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gurgur, C.Z., Luxhoj, J.T.: Application of chance-constrained programming to capital rationing problems with asymmetrically distributed cash flows and available budget. Eng. Econ. 48(3), 241–258 (2003)

    Article  Google Scholar 

  26. Alizadeh, F., Goldfarb, D.: Second-order cone programming. Math. Program. 95(1), 3–51 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  27. Bertsimas, D., Gupta, V., Kallus, N.: Data-driven robust optimization. arXiv preprint arXiv:1401.0212 (2013)

  28. Calafiore, G.C.: Direct data-driven portfolio optimization with guaranteed shortfall probability. Automatica 49(2), 370–380 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Delage, E., Ye, Y.: Distributionally robust optimization under moment uncertainty with application to data-driven problems. Oper. Res. 58(3), 595–612 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Xu, F., Lu, Z., Xu, Z.: An efficient optimization approach for a cardinality-constrained index tracking problem. Optim. Methods Softw. 31(2), 258–271 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. Gaivoronski, A.A., Krylov, S., van derWijst, N.: Optimal portfolio selection and dynamic benchmark tracking. Eur. J. Oper. Res. 163(1), 115–131 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  32. Treynor, J.L.: Market value, time, and risk. Time and Risk (1961)

  33. Sharpe, W.F.: Capital asset prices: a theory of market equilibrium under conditions of risk. J. Finance 19(3), 425–442 (1964)

    Google Scholar 

  34. Lintner, J.: The valuation of risk assets and the selection of risky investments in stock portfolios and capital budgets. Rev. Econ. Stat. 13–37 (1965)

  35. Mossin, J.: Equilibrium in a capital asset market. Econom. J. Econom. Soc. 768–783 (1966)

  36. Fama, E.F., French, K.R.: The capital asset pricing model: theory and evidence. J. Econ. Perspect. 18, 25–46 (2004)

    Article  Google Scholar 

  37. Fama, E.F., French, K.R.: Common risk factors in the returns on stocks and bonds. J. Financ. Econ. 33(1), 3–56 (1993)

    Article  MATH  Google Scholar 

  38. Fama, E.F., French, K.R.: Multifactor explanations of asset pricing anomalies. J. Finance 51(1), 55–84 (1996)

    Article  Google Scholar 

  39. Beasley, J.E.: OR-library: distributing test problems by electronic mail. J. Oper. Res. Soc. 41, 1069–1072 (1990)

    Article  Google Scholar 

  40. Ruiz-Torrubiano, R., Suárez, A.: A hybrid optimization approach to index tracking. Ann. Oper. Res. 166(1), 57–71 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  41. Lin, C., Liu, T.: Genetic algorithms for portfolio selection problems with minimum transaction lots. Eur. J. Oper. Res. 185, 393–404 (2008)

    Article  MATH  Google Scholar 

  42. Lin, D., Wang, S., Yan, H.: A multiobjective genetic algorithm for portfolio selection problem. In: Proceedings of the 5th International Conference on Optimization: Techniques and Applications, pp. 15–17 (2001)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meihua Wang.

Additional information

The first author was supported by the National Natural Science Foundation of China (Nos. 11571271, 11631013). The second author was supported by the National Natural Science Foundation of China (Nos. 71501155, 11601409) and the Postdoctoral Science Foundation of China(Nos. 2013M530418, 2014T70908). The third author was supported by the National Natural Science Foundation of China (Nos. 11331012, 71331001), the National Funds for Distinguished Young Scientists (No. 11125107) and the National 973 Program of China (No. 2015CB856000). The fourth author was supported by the National Natural Science Foundation of China (No. 11531014).

Appendix: Proof of Theorem 1

Appendix: Proof of Theorem 1

Proof

Similar to the results in [24], the corresponding moment problem of (2.7) for each fixed w can be written as:

$$\begin{aligned}&\inf \limits _{F} \qquad \int _{z\in Z} I_{S_w}(z)dF(z)\nonumber \\&\mathrm{s.t.} \qquad \int _{z\in Z}dF(z)=1, \nonumber \\&\qquad \qquad \int _{z\in Z} z_j dF(z)=\mu _j, \quad \forall j=1,2,\ldots ,k,\nonumber \\&\qquad \qquad \int _{z\in Z} z_j^2 dF(z)=\mu _j^2+\sigma _j^2, \quad \forall j=1,2,\ldots ,k. \end{aligned}$$
(6.1)

The dual program of (6.1) is formulated by

$$\begin{aligned}&\sup \limits _{\theta ,\alpha ,\beta } \qquad \theta +\sum \limits _{j = 1}^k {\mu _j \alpha _j}+\sum \limits _{j = 1}^k (\mu _j^2+\sigma _j^2) \beta _j \end{aligned}$$
(6.2)
$$\begin{aligned}&\mathrm{s.t.}\qquad \theta +\sum \limits _{j = 1}^k {z_j \alpha _j}+\sum \limits _{j = 1}^k z_j^2 \beta _j\le I_{S_w}(z), \quad \forall z\in Z. \end{aligned}$$
(6.3)

The constraint (6.3) can be rewritten as follows:

$$\begin{aligned}&\theta +\sum \limits _{j = 1}^k {z_j \alpha _j}+\sum \limits _{j = 1}^k z_j^2 \beta _j\le 1, \quad \forall z\in Z, \end{aligned}$$
(6.4)
$$\begin{aligned}&\theta +\sum \limits _{j = 1}^k {z_j \alpha _j}+\sum \limits _{j = 1}^k z_j^2 \beta _j\le 0, \quad \forall z\in Z:y^0(w)+y(w)^T z-d<0. \end{aligned}$$
(6.5)

We first reformulate the constraint (6.4) to the following

$$\begin{aligned} \begin{array}{ll} 0\ge \max \limits _{z}\ &{} \theta -1+\alpha ^T z+\beta ^Tz^2\\ ~~~~~~~\text {s.t.} &{} l\le z\le u.\\ \end{array} \end{aligned}$$
(6.6)

By imposing \(\beta <0\), we are able to give a conservative approximation for (6.6) by using the Lagrangian dual problem. Then there exist \(v_{0j}\) and \( {\bar{v}}_{0j}\ge 0(j=1,2,\ldots ,k)\) such that

$$\begin{aligned}&\mathop {\max }\limits _z \,\;\theta - 1 + {\alpha ^{\mathrm{T}}}z + {\beta ^{\mathrm{T}}}{z^2} + {\nu _0}^{\mathrm{T}}(z - l) - {{\overline{\nu }}} _0^{\mathrm{T}}(z - u)\\&= \mathop {\max }\limits _z \,\;\theta - 1 + \sum \limits _{j = 1}^k ( {{{\overline{\nu }}} _{0j}}{u_j} - {\nu _{0j}}{l_j}) + \sum \limits _{j = 1}^k ( {\beta _j}z_j^2 + ({\alpha _j} + {\nu _{0j}} - {{{\overline{\nu }}} _{0j}}){z_j})\\&\;\; = \mathop {\max }\limits _z \,\;\theta - 1 + \sum \limits _{j = 1}^k ( {{{\overline{\nu }}} _{0j}}{u_j} - {\nu _{0j}}{l_j}) - \sum \limits _{j = 1}^k {\frac{{{{({\alpha _j} + {\nu _{0j}} - {{{{\overline{\nu }}} }_{0j}})}^2}}}{{4{\beta _j}}}} \\&\qquad + \sum \limits _{j = 1}^k {{\beta _j}\left( {z_j} + \frac{{{\alpha _j} + {\nu _{0j}} - {{{{\overline{\nu }}} }_{0j}}}}{{2{\beta _j}}} \right) ^2}. \end{aligned}$$

Since \( \sum \limits _{j = 1}^k {\beta _j(z_j+\frac{\alpha _j+v_{0j}-{\bar{v}}_{0j}}{2\beta _j})^2}<0\), then the inequality

$$\begin{aligned} \theta - 1 + \sum \limits _{j = 1}^k ( {{{\overline{\nu }}} _{0j}}{u_j} - {\nu _{0j}}{l_j}) - \sum \limits _{j = 1}^k {\frac{{{{({\alpha _j} + {\nu _{0j}} - {{{{\overline{\nu }}} }_{0j}})}^2}}}{{4{\beta _j}}}} \le 0 \end{aligned}$$
(6.7)

implies that

$$\begin{aligned} \mathop {\max }\limits _z \,\;\theta - 1 + {\alpha ^{\mathrm{T}}}z + {\beta ^{\mathrm{T}}}{z^2} + {\nu _0}^\mathrm{T}(z - l) - {{\overline{\nu }}} _0^{\mathrm{T}}(z - u)\le 0. \end{aligned}$$

By introducing \(k_{0j}\ge 0~(j=1,2,\ldots ,k)\), we can rewrite (6.7) as

$$\begin{aligned}&\theta -1+\sum \limits _{j = 1}^k ({k_{0j}+{\bar{v}}_{0j}u_j-v_{0j}l_j})\le 0, \end{aligned}$$
(6.8)
$$\begin{aligned}&k_{0j}\ge -\frac{(\alpha _j+v_{0j}-{\bar{v}}_{0j})^2}{4\beta _j}, \quad j=1,2,\ldots ,k. \end{aligned}$$
(6.9)

The inequality (6.9) is equivalent to

$$\begin{aligned} (k_{0j}-\beta _j)^2\ge (\alpha _j+v_{0j}-{\bar{v}}_{0j})^2+(k_{0j}+\beta _j)^2, \quad j=1,2,\ldots ,k. \end{aligned}$$
(6.10)

Since \(k_{0j}-\beta _j\ge 0\), the above inequality indicates that

$$\begin{aligned} (\alpha _j+v_{0j}-{\bar{v}}_{0j},k_{0j}+\beta _j,k_{0j}-\beta _j)^T\in L^3, \quad j=1,2,\ldots ,k. \end{aligned}$$
(6.11)

Combining the constraints (6.8) and (6.11) with \(v_{0j},{\bar{v}}_{0j},k_{0j}\ge 0,\beta _j < 0,j=1,2,\ldots ,k\), we obtain a conservative approximation for the constraint (6.4).

Similarly, (6.5) can be reformulated by

$$\begin{aligned} \begin{array}{ll} 0\ge \max \limits _{z}\ &{} \theta +\sum \limits _{j = 1}^k {z_j \alpha _j}+\sum \limits _{j = 1}^k z_j^2\beta _j \\ ~~~~~~\text {s.t.} &{} y^0(w)+y(w)^T z-d< 0,\\ &{} l\le z\le u.\\ \end{array} \end{aligned}$$
(6.12)

Since we impose that \(\beta <0\), we are able to give a conservative approximation for (6.12) by using the Lagrangian dual problem. There exist \(\varphi \ge 0,v_{1j},{\bar{v}}_{1j}\ge 0(j=1,2,\ldots ,k)\) such that

$$\begin{aligned}&\max \limits _{z}\ \theta +\sum \limits _{j = 1}^k {z_j \alpha _j}+\sum \limits _{j = 1}^k z_j^2\beta _j-\varphi ( y^0(w)+y(w)^T z-d) \nonumber \\&\qquad +\sum \limits _{j = 1}^k {v_{1j} (z_j-l_j)}-\sum \limits _{j = 1}^k {{\bar{v}}_{1j} (z_j-u_j)} \nonumber \\&\quad = \max \limits _{z}\ \theta -\varphi ( y^0(w)-d)+\sum \limits _{j = 1}^k {({\bar{v}}_{1j} {u_j}-v_{1j} {l_j})}\nonumber \\&\qquad +\sum \limits _{j = 1}^k {((\alpha _j-\varphi y^j(w)+v_{1j}-{\bar{v}}_{1j})z_j+\beta _jz_j^2)} \nonumber \\&\quad = \max \limits _{z}\ \theta -\varphi ( y^0(w)-d)+\sum \limits _{j = 1}^k {({\bar{v}}_{1j} {u_j}-v_{1j} {l_j})}-\sum \limits _{j = 1}^k {\frac{(\alpha _j-\varphi y^j(w)+v_{1j}-{\bar{v}}_{1j})^2}{4\beta _j}} \nonumber \\&\qquad +\sum \limits _{j = 1}^k \beta _j\left( z_j+\frac{\alpha _j-\varphi y^j(w)+v_{1j}-{\bar{v}}_{1j}}{2\beta _j}\right) ^2 \end{aligned}$$

In the same way,

$$\begin{aligned} \theta -\varphi ( y^0(w)-d)+\sum \limits _{j = 1}^k {({\bar{v}}_{1j} {u_j}-v_{1j} {l_j})}- \sum \limits _{j = 1}^k {\frac{(\alpha _j-\varphi y^j(w)+v_{1j}-{\bar{v}}_{1j})^2}{4\beta _j}} \le 0 \end{aligned}$$
(6.13)

remains a conservative approximation for

$$\begin{aligned} \max \limits _{z}\ \theta +\sum \limits _{j = 1}^k {z_j \alpha _j}+\sum \limits _{j = 1}^k z_j^2\beta _j-\varphi ( y^0(w)+y(w)^T z-d) \le 0, \end{aligned}$$

since

$$\begin{aligned} \sum \limits _{j = 1}^k \beta _j(z_j+{\frac{\alpha _j-\varphi y^j(w)+v_{1j}-{\bar{v}}_{1j}}{2\beta _j})^2} \le 0. \end{aligned}$$

By introducing \(k_{1j}\ge 0(j=1,2,\ldots ,k)\), we can rewrite (6.13) as

$$\begin{aligned}&\theta -\varphi ( y^0(w)-d)+\sum \limits _{j = 1}^k {(k_{1j}+{\bar{v}}_{1j} {u_j}-v_{1j} {l_j})}\le 0, \end{aligned}$$
(6.14)
$$\begin{aligned}&k_{1j}\ge -{\frac{(\alpha _j-\varphi y^j(w)+v_{1j}-{\bar{v}}_{1j})^2}{4\beta _j}}, \quad j=1,2,\ldots ,k. \end{aligned}$$
(6.15)

we rewrite the inequality (6.15) as follows

$$\begin{aligned} (k_{1j}-\beta _j)^2\ge (\alpha _j-\varphi y^j(w)+v_{1j}-{\bar{v}}_{1j})^2+(k_{1j}+\beta _j)^2, \quad j=1,2,\ldots ,k. \end{aligned}$$
(6.16)

In view of \(k_{0j}-\beta _j\ge 0\), we have that

$$\begin{aligned} (\alpha _j-\varphi y^j(w)+v_{1j}-{\bar{v}}_{1j},k_{1j}+\beta _j,k_{1j}-\beta _j)^T\in L^3, \quad j=1,2,\ldots ,k. \end{aligned}$$
(6.17)

Putting together (6.14) and (6.17) with \(\varphi ,v_{1j},{\bar{v}}_{1j},k_{1j}\ge 0,\beta _j \le 0,j=1,2,\ldots ,k\), we obtain a conservative approximation for the constraint (6.5).

In summary, combining (6.2), (6.8), (6.11), (6.14) and (6.17), we obtain a safe approximation for the distributionally robust chance constrained program (2.8) as

$$\begin{aligned} \begin{array}{ll} \mathop {\max }\ &{} d \\ \text {s.t.} &{} \theta +\mu ^T\alpha +(\mu ^2+\sigma ^2)^T\beta \ge 1-\varepsilon ,\\ &{} \theta -1+\sum \limits _{j = 1}^k ({k_{0j}+{\bar{v}}_{0j}u_j-v_{0j}l_j})\le 0,\\ &{} (\alpha _j+v_{0j}-{\bar{v}}_{0j},k_{0j}+\beta _j,k_{0j}-\beta _j)^T\in L^3, \quad j=1,2,\ldots ,k, \\ &{} \theta -\varphi ( y^0(w)-d)+\sum \limits _{j = 1}^k {(k_{1j}+{\bar{v}}_{1j} {u_j}-v_{1j} {l_j})}\le 0,\\ &{} (\alpha _j-\varphi y^j(w)+v_{1j}-{\bar{v}}_{1j},k_{1j}+\beta _j,k_{1j}-\beta _j)^T\in L^3, \quad j=1,2,\ldots ,k,\\ &{} s_{m}\ge r_{n+1,m}-\sum \limits _{i = 1}^n {w_i r_{i,m} },\quad m=1,2,\ldots ,M ,\\ &{} s_{m}\ge 0, \quad m=1,2,\ldots ,M,\\ &{} \sum \limits _{m= 1}^M {q_m s_m}\le \eta ,\\ &{} w\in W,\\ &{} \theta \in R^1,\alpha ,\beta \in R^k,\varphi \ge 0,v_{0j},{\bar{v}}_{0j},v_{1j},{\bar{v}}_{1j},k_{0j},k_{1j}\ge 0,\beta _j \le 0,\quad j=1,2,\ldots ,k.\\ \end{array} \end{aligned}$$
(6.18)

Assumed that \(\varphi >0\) and \(\theta :=\theta /\varphi ,\alpha :=\alpha /\varphi ,\beta :=\beta /\varphi ,k :=k/\varphi ,v :=v/\varphi ,{\bar{v}} :={\bar{v}}/\varphi ,\varphi :=1/\varphi \), it comes the the theorem. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, F., Wang, M., Dai, YH. et al. A sparse enhanced indexation model with chance and cardinality constraints. J Glob Optim 70, 5–25 (2018). https://doi.org/10.1007/s10898-017-0513-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-017-0513-1

Keywords

Navigation