Skip to main content
Log in

A stabilized filter SQP algorithm for nonlinear programming

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

This paper presents a stabilized filter sequential quadratic programming (SQP) method for the general nonlinear optimization problems. The technique of stabilizing the inner quadratic programmings is an efficient strategy for the degenerate problem and brings the local superlinear convergence, while the integrated filter technique works effectively and guarantees the global convergence. The new algorithm works on both the primal and dual variables and solves the problem within the computational complexity comparable to the classical SQP algorithm. For the convergence, we show that (1) it converges either to a Karush–Kuhn–Tucker point at which the cone-continuity property holds, or to a stationary point in the sense of minimizing the constraint violation, and (2) under some second-order sufficient conditions, it converges locally superlinearly without any constraint qualifications. Our preliminary numerical results on a set of CUTEr test problems as well as on degenerate problems demonstrate the efficiency of the new algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. In terms of the SC condition, the SOSC is equivalent to the stronger SOSC [8].

  2. In other words, \((\hat{x},\hat{\mu })\) is said to be g-acceptable to \((x^l,\mu ^l)\) if at least one of (3.8) and (3.9) is satisfied.

  3. Here, \(\tau \) and \(\vartheta \) can be replaced by a single parameter. The reason that they are referred to separately here is for the convenience of the later references (3.15) and (3.18b).

  4. In our implementations, we simply set \(\mu _{\max }=10^6\) and it works well in our numerical tests.

  5. Inner loop G may find a step size \(\alpha ^k\ge \alpha _{\min }^k\) such that \((\hat{x},\hat{\mu })\) is accepted as a next iterate, or return \((\hat{x},\hat{\mu })\) and \(\alpha (< \alpha _{\min }^k)\).

  6. The proof of Lemma 4.5 needs Assumption 4.2\(^*\) explicitly, and all subsequent lemmas or theorems based on Lemma 4.5 need Assumption 4.2\(^*\) implicitly.

References

  1. Andreani, R., Haeser, G., Martinez, J.M.: On sequential optimality conditions for smooth constrained optimization. Optimization 60(5), 627–641 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Andreani, R., Haeser, G., Schuverdt, M.L., Silva, P.J.S.: A relaxed constant positive linear dependence constraint qualification and applications. Math. Program. 135(1–2), 255–273 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Andreani, R., Haeser, G., Schuverdt, M.L., Silva, P.J.S.: Two new weak constraint qualifications and applications. SIAM J. Optim. 22(3), 1109–1135 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Andreani, R., Martinez, J.M., Schuverdt, M.L.: On the relation between constant positive linear dependence condition and quasinormality constraint qualification. J. Optim. Theory Appl. 125(2), 473–483 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Andreani, R., Martinez, J.M., Ramos, A., Silva, P.J.S.: A cone-continuity constraint qualification and algorithmic consequences. http://www.optimization-online.org/DB_HTML/2015/02/4779.html (2015)

  6. Anitescu, M.: Degenerate nonlinear programming with a quadratic growth condition. SIAM J. Optim. 10(4), 1116–1135 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bonnans, J.F., Ioffe, A.: Second-order sufficiency and quadratic growth for nonisolated minima. Math. Oper. Res. 20(4), 801–817 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bonnans, J.F., Gilbert, J.C., Lemaréchal, C., Sagastizábal, C.A.: Numer. Optim. Theor. Pract. Asp., 2nd edn. Springer Verlag, New York, NY (2006)

    Google Scholar 

  9. Byrd, R., Lopez-Calva, G., Nocedal, J.: A line search exact penalty method using steering rules. Math. Program. 133(1–2), 39–73 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Byrd, R., Curtis, F., Nocedal, J.: Infeasibility detection and SQP methods for nonlinear optimization. SIAM J. Optim. 20(5), 2281–2299 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen, L., Goldfarb, D.: Interior-point \(l_2\)-penalty methods for nonlinear programming with strong global convergence properties. Math. Program. 108(1), 1–36 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chin, C.M., Fletcher, R.: On the global convergence of an SLP-filter algorithm that takes EQP steps. Math. Program. 96(1), 161–177 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Conn, A.R., Gould, N.I.M., Toint, P.L.: Trust-Region Methods. MPS-SIAM Series on Optimization. SIAM, Philadelphia (2000)

    Book  Google Scholar 

  14. Dolan, E.D., Moré, J.: Benchmarking optimization software with performance profiles. Math. Program. 91, 201–213 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fernández, D., Solodov, M.: Stabilized sequential quadratic programming for optimization and a stabilized newton-type method for variational problems. Math. Program. 125(1), 47–73 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fernández, D.: A quasi-Newton strategy for the sSQP method for variational inequality and optimization problems. Math. Program. 137(1), 199–223 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fischer, A.: Modified wilson’s method for nonlinear programs with nonunique multipliers. Math. Oper. Res. 24(3), 699–727 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fletcher, R.: A new variational result for quasi-Newton formulae. SIAM J. Optim. 1(1), 18–21 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  19. Fletcher, R., Leyffer, S.: Filter-type algorithms for solving systems of algebraic equations and inequalities. In: di Pillo, G., Murli, A. (eds.) High Performance Algorithms and Software for Nonlinear Optimization, pp. 259–278. Kluwer, Dordrecht (2003)

    Google Scholar 

  20. Fletcher, R., Leyffer, S., Toint, PhL: On the global convergence of a filter SQP algorithm. SIAM J. Optim. 13(1), 44–59 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gill, P.E., Kungurtsev, V., Robinson, D.P.: A regularized SQP method with convergence to second-order optimal points. http://www.optimization-online.org/DB_HTML/2013/10/4102.html (2013)

  22. Gill, PhE, Murray, W., Saunders, M.A.: SNOPT: an SQP algorithm for large-scale constrained optimization. SIAM Rev. 47, 99–131 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Gill, P.E., Robinson, D.P.: A globally convergent stabilized SQP method. SIAM J. Optim. 23(4), 1983–2010 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Gould, N.I.M., Orban, D., Toint, PhL: CUTEr (and SifDec): a constrained and unconstrained testing environment, revisited. ACM Trans. Math. Softw. 29(4), 373–394 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hager, W.W.: Stabilized sequential quadratic programming. Comput. Optim. Appl. 12(1–3), 253–273 (1999)

    MathSciNet  MATH  Google Scholar 

  26. Hager, W.W., Gowda, M.S.: Stability in the presence of degeneracy and error estimation. Math. Program. 85(1), 181–192 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hestenes, M.R.: Optimization Theory—The Finite Dimensional Case. Wiley, New York (1975)

    MATH  Google Scholar 

  28. Ioffe, A.: On sensitivity analysis of nonlinear programs in banach-spaces-the approach via composite unconstrained optimization. SIAM J. Optim. 4(1), 1–43 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  29. Izmailov, A.F., Kurennoy, A.S., Solodov, M.V.: Local convergence of the method of multipliers for variational and optimization problems under the noncriticality assumption. Comput. Optim. Appl. 60, 111–140 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Li, D.H., Qi, L.Q.: A stabilized SQP method via linear equations. Technical report, Mathematics Department, University of New South Wales (2000)

  31. Mangasarian, O.L., Fromovitz, S.: The Fritz John necessary optimality conditions in the presence of equality and inequality constraints. J. Math. Anal. Appl. 17, 37–47 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  32. Nocedal, J., Wright, S.J.: Numer. Optim., 2nd edn. Springer, New York (2006)

    Google Scholar 

  33. Powell, M.J.D.: A new algorithm for unconstrained optimization. Nonlinear Programming (Proceedings of Symposium University of Wisconsin. Madison, Wisconsin), pp. 31–65. Academic Press, New York (1970)

  34. Powell, M.J.D.: A fast algorithm for nonlinearly constrained optimization calculations. In: Watson, G.A. (ed.) Numer. Anal., pp. 144–157. Springer, Berlin (1977)

    Google Scholar 

  35. Qi, L.Q., Wei, Z.X.: On the constant positive linear dependence condition and its application to SQP methods. SIAM J. Optim. 10(4), 963–981 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  36. Ralph, D., Wright, S.J.: Superlinear convergence of an interior-point method despite dependent constraints. Math. Oper. Res. 25(2), 179–194 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  37. Shen, C.G., Leyffer, S., Fletcher, R.: A nonmonotone filter method for nonlinear optimization. Comput. Optim. Appl. 52, 583–607 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  38. Shen, C.G., Xue, W.J., Pu, D.G.: Global convergence of a tri-dimensional filter SQP algorithm based on the line search method. Appl. Numer. Math. 59(2), 235–250 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  39. Ugray, Z., Lasdon, L., Plummer, J.C., Glover, F., Kelly, J., Mart, R.: Scatter search and local NLP solvers: multistart framework for global optimization. INFORMS J. Comput. 19(3), 328–340 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  40. Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 106, 25–57 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  41. Wright, S.J.: Superlinear convergence of a stabilized SQP method to a degenerate solution. Comput. Optim. Appl. 11, 253–275 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  42. Wright, S.J.: Modifying SQP for degenerate problems. SIAM J. Optim. 13(2), 470–497 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  43. Wright, S.J.: An algorithm for degenerate nonlinear programming with rapid local convergence. SIAM J. Optim. 15(3), 673–696 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We would like to thank the Editor and the anonymous referees for their comments and suggestions that have improved the quality of this paper greatly. We also thank Professor Mikhail Solodov for suggesting the filter-type strategy in globalizing the stabilized SQP to the first author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chungen Shen.

Additional information

The work of the first author is supported in part by the National Natural Science Foundation of China (No. 11271259). The work of the second author is supported in part by the National Natural Science Foundation of China (No. 11371102) and by the Basic Academic Discipline Program, the 11th five year plan of the 211 Project for Shanghai University of Finance and Economics. The work of the third author is supported in part by the National Natural Science Foundation of China (No. 71401105), by the National Natural Science Foundation of Shanghai (No. 13ZR1427200), and by the Innovation Program of the Shanghai Municipal Education Commission (No. 13YZ126).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, C., Zhang, LH. & Liu, W. A stabilized filter SQP algorithm for nonlinear programming. J Glob Optim 65, 677–708 (2016). https://doi.org/10.1007/s10898-015-0400-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-015-0400-6

Keywords

Mathematics Subject Classification

Navigation