Skip to main content
Log in

Global optimization with spline constraints: a new branch-and-bound method based on B-splines

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

This paper discusses the use of splines as constraints in mathematical programming. By combining the mature theory of the B-spline and the widely used branch-and-bound framework a novel spatial branch-and-bound (sBB) method is obtained. The method solves nonconvex mixed-integer nonlinear programming (MINLP) problems with spline constraints to global optimality. A broad applicability follows from the fact that a spline may represent any (piecewise) polynomial and accurately approximate other nonlinear functions. The method relies on a reformulation–convexification technique which results in lifted polyhedral relaxations that are efficiently solved by an LP solver. The method has been implemented in the sBB solver Convex ENvelopes for Spline Optimization (CENSO). In this paper CENSO is compared to several state-of-the-art MINLP solvers on a set of polynomially constrained NLP problems. To further display the versatility of the method a realistic pump synthesis problem of class MINLP is solved with exact and approximated pump characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Division by zero is handled by a ‘\(0/0 = 0\)’ convention.

  2. A knot vector satisfying the conditions in Definition 1 is also said to be (\(p+1\))-regular or clamped.

  3. \(\le \mathbf{p}\) is here meant as element-wise inequality. Note that a multivariate spline or polynomial of degree \(\mathbf{p}\) may have terms like \(x_{1}^{p_1}\ldots x_{d}^{p_d}\), so in the conventional sense its degree is \(\sum _j p_j\).

References

  1. Adjiman, C., Androulakis, I., Floudas, C.: Global optimization of MINLP problems in process synthesis and design. Comput. Chem. Eng. 21, S445–S450 (1997)

    Article  Google Scholar 

  2. Adjiman, C.S., Androulakis, I.P., Floudas, C.A.: A global optimization method, \(\alpha \)BB, for general twice-differentiable constrained NLPs-II. Implementation and computational results. Comput. Chem. Eng. 22(9), 1159–1179 (1998)

    Article  Google Scholar 

  3. Adjiman, C.S., Androulakis, I.P., Floudas, C.A.: Global optimization of mixed-integer nonlinear problems. AIChE J. 46, 1769–1797 (2000)

    Article  Google Scholar 

  4. Adjiman, C.S., Dallwig, S., Floudas, C.A., Neumaier, A.: A global optimization method, \(\alpha \)BB, for general twice-differentiable constrained NLPs-I. Theoretical advances. Comput. Chem. Eng. 22(9), 1137–1158 (1998)

    Article  Google Scholar 

  5. Akl, S.G., Toussaint, G.T.: A fast convex hull algorithm. Inf. Process. Lett. 7(5), 219–222 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  6. Belotti, P., Lee, J., Liberti, L., Margot, F., Wächter, A.: Branching and bounds tightening techniques for non-convex MINLP. Optim. Methods Softw. 24(4–5), 597–634 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bergamini, M.L., Aguirre, P., Grossmann, I.: Logic-based outer approximation for globally optimal synthesis of process networks. Comput. Chem. Eng. 29(9), 1914–1933 (2005)

    Article  Google Scholar 

  8. Boehm, W.: Inserting new knots into B-spline curves. Comput. Aided Des. 12(4), 199–201 (1980)

    Article  Google Scholar 

  9. Bonami, P., Biegler, L.T., Conn, A.R., Cornuéjols, G., Grossmann, I.E., Laird, C.D., Lee, J., Lodi, A., Margot, F., Sawaya, N., et al.: An algorithmic framework for convex mixed integer nonlinear programs. Discrete Optim. 5(2), 186–204 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Boyd, S.P., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  11. Burer, S., Letchford, A.N.: Non-convex mixed-integer nonlinear programming: a survey. Surv. Oper. Res. Manag. Sci. 17(2), 97–106 (2012)

    MathSciNet  Google Scholar 

  12. Carrizosa, E., Hansen, P., Messine, F.: Improving interval analysis bounds by translations. J. Global Optim. 29(2), 157–172 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cohen, E., Lyche, T., Riesenfeld, R.: Discrete B-splines and subdivision techniques in computer-aided geometric design and computer graphics. Comput. Graph. Image Process. 14(2), 87–111 (1980)

    Article  Google Scholar 

  14. Cohen, E., Schumaker, L.L.: Rates of convergence of control polygons. Comput. Aided Geom. Des. 2(1), 229–235 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cox, M.G.: The numerical evaluation of B-splines. IMA J. Appl. Math. 10(2), 134–149 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  16. Croxton, K.L., Gendron, B., Magnanti, T.L.: Models and methods for merge-in-transit operations. Transp. Sci. 37(1), 1–22 (2003)

    Article  Google Scholar 

  17. Curry, H.B., Schoenberg, I.J.: On Pólya frequency functions IV: the fundamental spline functions and their limits. Journal d’analyse mathématique 17(1), 71–107 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  18. De Boor, C.: On calculating with B-splines. J. Approx. Theory 6(1), 50–62 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  19. Dias, R., Garcia, N.L., Zambom, A.Z.: A penalized nonparametric method for nonlinear constrained optimization based on noisy data. Comput. Optim. Appl 45(3), 521–541 (2010). doi:10.1007/s10589-008-9185-6

    Article  MathSciNet  MATH  Google Scholar 

  20. Floudas, C.A., Pardalos, P.M.: A Collection of Test Problems for Constrained Global Optimization Algorithms, vol. 455. Springer, Berlin (1990)

    MATH  Google Scholar 

  21. Floudas, C.A., Pardalos, P.M., Adjiman, C.S., Esposito, W.R., Gumus, Z.H., Harding, S.T., Klepeis, J.L., Meyer, C.A., Schweiger, C.A.: Handbook of Test Problems in Local and Global Optimization, vol. 33. Kluwer Academic Publishers, Dordrecht (1999)

    MATH  Google Scholar 

  22. GAMS Development Corporation: General Algebraic Modeling System (GAMS) Release 24.2.1. Washington (2013). http://www.gams.com/

  23. Garloff, J., Jansson, C., Smith, A.P.: Lower bound functions for polynomials. J. Comput. Appl. Math. 157(1), 207–225 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. Garloff, J., Smith, A.P.: Investigation of a subdivision based algorithm for solving systems of polynomial equations. Nonlinear Anal. Theory, Methods & Appl. 47(1), 167–178 (2001). doi:10.1016/S0362-546X(01)00166-3

    Article  MathSciNet  MATH  Google Scholar 

  25. Gatzke, E.P., Tolsma, J.E., Barton, P.I.: Construction of convex relaxations using automated code generation techniques. Optim. Eng. 3(3), 305–326 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  26. Grimstad, B.: SPLINTER: A library for multivariate function approximation.https://github.com/bgrimstad/splinter. Accessed 16 May 2015 (2015)

  27. Grimstad, B., et al.: CENSO: a framework for global optimization of nonconvex, possibly spline-constrained, MINLP problems. https://github.com/bgrimstad/censo (2015). Accessed 16 May 2015

  28. Guennebaud, G., Jacob, B., et al.: Eigen v3. http://eigen.tuxfamily.org (2010)

  29. Gunnerud, V., Foss, B.: Oil production optimization—a piecewise linear model, solved with two decomposition strategies. Comput. Chem. Eng. 34(11), 1803–1812 (2010)

    Article  Google Scholar 

  30. Gurobi Optimization, Inc.: Gurobi Optimizer Reference Manual. http://www.gurobi.com (2014)

  31. Hansen, E., Walster, G.W.: Global Optimization Using Interval Analysis: Revised and Expanded, vol. 264. CRC Press, Boca Raton (2003)

    Google Scholar 

  32. Henrion, D., Lasserre, J.B., Löfberg, J.: Gloptipoly 3: moments, optimization and semidefinite programming. Optim. Methods Softw. 24(4–5), 761–779 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  33. Hooker, J.: Logic-Based Methods for Optimization: Combining Optimization and Constraint Satisfaction, vol. 2. Wiley, New York (2011)

    MATH  Google Scholar 

  34. Horst, R., Tuy, H.: Global Optimization: Deterministic Approaches, 3rd edn. Springer, Berlin (1996)

    Book  MATH  Google Scholar 

  35. Jones, D.R.: A taxonomy of global optimization methods based on response surfaces. J. Global Optim. 21(4), 345–383 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  36. Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive black-box functions. J. Global Optim. 13(4), 455–492 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  37. Keha, A.B., de Farias Jr, I.R., Nemhauser, G.L.: A branch-and-cut algorithm without binary variables for nonconvex piecewise linear optimization. Oper. Res. 54(5), 847–858 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  38. Kesavan, P., Barton, P.I.: Generalized branch-and-cut framework for mixed-integer nonlinear optimization problems. Comput. Chem. Eng. 24(2), 1361–1366 (2000)

    Article  Google Scholar 

  39. Kosmidis, V.D., Perkins, J.D., Pistikopoulos, E.N.: A mixed integer optimization formulation for the well scheduling problem on petroleum fields. Comput. Chem. Eng. 29(7), 1523–1541 (2005)

    Article  Google Scholar 

  40. Koziel, S., Michalewicz, Z.: Evolutionary algorithms, homomorphous mappings, and constrained parameter optimization. Evolut. Comput. 7(1), 19–44 (1999)

    Article  Google Scholar 

  41. Lasserre, J.B.: Global optimization with polynomials and the problem of moments. SIAM J. Optim. 11(3), 796–817 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  42. Lebbah, Y., Michel, C., Rueher, M.: An efficient and safe framework for solving optimization problems. J. Comput. Appl. Math. 199(2), 372–377 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  43. Li, H.L., Chang, C.T.: An approximate approach of global optimization for polynomial programming problems. Eur. J. Oper. Res. 107(3), 625–632 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  44. Liberti, L., Pantelides, C.: Convex envelopes of monomials of odd degree. J. Global Optim. 25, 157–168 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  45. Liberti, L., Pantelides, C.C.: An exact reformulation algorithm for large nonconvex NLPs involving bilinear terms. J. Global Optim. 36(2), 161–189 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  46. Lin, Y., Schrage, L.: The global solver in the LINDO API. Optim. Methods Softw. 24(4–5), 657–668 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  47. Locatelli, M., Schoen, F.: On convex envelopes for bivariate functions over polytopes. Math. Progr. 144(1–2), 65–91 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  48. Lyche, T., Cohen, E., Mørken, K.: Knot line refinement algorithms for tensor product B-spline surfaces. Comput. Aided Geom. Des. 2(1), 133–139 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  49. Martin, A., Möller, M., Moritz, S.: Mixed integer models for the stationary case of gas network optimization. Math. Progr. 105(2–3), 563–582 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  50. McCormick, G.P.: Computability of global solutions to factorable nonconvex programs: Part i–convex underestimating problems. Math. Progr. 10(1), 147–175 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  51. McDonald, D.B., Grantham, W.J., Tabor, W.L., Murphy, M.J.: Global and local optimization using radial basis function response surface models. Appl. Math. Model. 31(10), 2095–2110 (2007)

    Article  MATH  Google Scholar 

  52. Meeraus, A.: GLOBALLib (2013). http://www.gamsworld.org/global/globallib.htm

  53. Messine, F.: Deterministic global optimization using interval constraint propagation techniques. RAIRO Oper. Res. 38(04), 277–293 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  54. Meyer, C.A., Floudas, C.A.: Convex envelopes for edge-concave functions. Math. Progr. 103(2), 207–224 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  55. Meyer, C.A., Floudas, C.A.: Convex underestimation of twice continuously differentiable functions by piecewise quadratic perturbation: spline \(\alpha \)BB underestimators. J. Global Optim. 32(2), 221–258 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  56. Meyer, C.A., Floudas, C.A., Neumaier, A.: Global optimization with nonfactorable constraints. Ind. Eng. Chem. Res. 41(25), 6413–6424 (2002)

    Article  Google Scholar 

  57. Misener, R., Thompson, J.P., Floudas, C.A.: Apogee: Global optimization of standard, generalized, and extended pooling problems via linear and logarithmic partitioning schemes. Comput. Chem. Eng. 35(5), 876–892 (2011)

    Article  Google Scholar 

  58. Nataraj, P., Arounassalame, M.: A new subdivision algorithm for the Bernstein polynomial approach to global optimization. Int. J. Autom. Comput. 4(4), 342–352 (2007)

    Article  Google Scholar 

  59. Nataraj, P., Arounassalame, M.: Constrained global optimization of multivariate polynomials using bernstein branch and prune algorithm. J. Global Optim. 49(2), 185–212 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  60. Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization, vol. 18. Wiley, New York (1988)

    MATH  Google Scholar 

  61. Padberg, M., Rinaldi, G.: A branch-and-cut algorithm for the resolution of large-scale symmetric traveling salesman problems. SIAM Rev. 33(1), 60–100 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  62. Park, S.: Approximate branch-and-bound global optimization using b-spline hypervolumes. Adv. Eng. Softw. 45(1), 11–20 (2012)

    Article  Google Scholar 

  63. Piegl, L.A., Tiller, W.: The NURBS Book. Springer, Berlin (1997)

    Book  MATH  Google Scholar 

  64. Pinter, J.D.: LGO—a program system for continuous and lipschitz global optimization. In: Developments in Global Optimization, pp. 183–197. Springer, New York (1997)

  65. Pochet, Y., Wolsey, L.A.: Production Planning by Mixed Integer Programming. Springer, New York (2006)

    MATH  Google Scholar 

  66. Prautzsch, H., Kobbelt, L.: Convergence of subdivision and degree elevation. Adv. Comput. Math. 2(1), 143–154 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  67. Regis, R.G.: Constrained optimization by radial basis function interpolation for high-dimensional expensive black-box problems with infeasible initial points. Eng. Optim. 46(2), 218–243 (2014)

    Article  MathSciNet  Google Scholar 

  68. Reif, U.: Best bounds on the approximation of polynomials and splines by their control structure. Comput. Aided Geom. Des. 17(6), 579–589 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  69. Ryoo, H.S., Sahinidis, N.V.: A branch-and-reduce approach to global optimization. J. Global Optim. 8(2), 107–138 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  70. Sahinidis, N.V.: Global optimization and constraint satisfaction: the branch-and-reduce approach. In: Global Optimization and Constraint Satisfaction, pp. 1–16. Springer, Berlin (2003)

  71. Sasena, M.J.: Flexibility and Efficiency Enhancements for Constrained Global Design Optimization with Kriging Approximations. Ph.D. thesis, University of Michigan (2002)

  72. Sasena, M.J., Papalambros, P., Goovaerts, P.: Exploration of metamodeling sampling criteria for constrained global optimization. Eng. Optim. 34(3), 263–278 (2002)

    Article  Google Scholar 

  73. Schönberg, I.J.: Contributions to the problem of approximation of equidistant data by analytic functions. Q. Appl. Math. 4(45–99), 112–141 (1946)

    Google Scholar 

  74. Schumaker, L.L.: Spline Functions: Basic Theory. Wiley, New York (1981)

    MATH  Google Scholar 

  75. Sherali, H.D., Tuncbilek, C.H.: A reformulation–convexification approach for solving nonconvex quadratic programming problems. J. Global Optim. 7(1), 1–31 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  76. Smith, A.P.: Fast construction of constant bound functions for sparse polynomials. J. Glob. Optim. 43(2–3), 445–458 (2009). doi:10.1007/s10898-007-9195-4

    Article  MathSciNet  MATH  Google Scholar 

  77. Smith, E., Pantelides, C.C.: Global optimisation of nonconvex MINLPs. Comput. Chem. Eng. 21, S791–S796 (1997)

    Article  Google Scholar 

  78. Smith, E.M., Pantelides, C.C.: A symbolic reformulation/spatial branch-and-bound algorithm for the global optimisation of nonconvex MINLPs. Comput. Chem. Eng. 23(4), 457–478 (1999)

    Article  Google Scholar 

  79. Sturm, J.F.: Using sedumi 1.02, a matlab toolbox for optimization over symmetric cones. Optim. Methods Softw. 11(1–4), 625–653 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  80. Tawarmalani, M., Sahinidis, N.V.: Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software, and Applications, vol. 65. Springer, Dordrecht (2002)

    MATH  Google Scholar 

  81. Tawarmalani, M., Sahinidis, N.V.: Global optimization of mixed-integer nonlinear programs: a theoretical and computational study. Math. Progr. 99(3), 563–591 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  82. Tawarmalani, M., Sahinidis, N.V.: A polyhedral branch-and-cut approach to global optimization. Math. Progr. 103(2), 225–249 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  83. Vaidyanathan, R., El-Halwagi, M.: Global optimization of nonconvex MINLP’s by interval analysis. In: Global Optimization in Engineering Design, pp. 175–193. Springer, New York (1996)

  84. Venkataraman, P.: Applied Optimization with MATLAB Programming. Wiley, New York (2009)

    Google Scholar 

  85. Vielma, J.P., Ahmed, S., Nemhauser, G.: Mixed-integer models for nonseparable piecewise-linear optimization: unifying framework and extensions. Oper. Res. 58(2), 303–315 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  86. Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Progr. 106(1), 25–57 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  87. Waki, H., Kim, S., Kojima, M., Muramatsu, M.: Sums of squares and semidefinite program relaxations for polynomial optimization problems with structured sparsity. SIAM J. Optim. 17(1), 218–242 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  88. Westerlund, T., Pettersson, F., Grossmann, I.E.: Optimization of pump configurations as a MINLP problem. Comput. Chem. Eng. 18(9), 845–858 (1994)

    Article  Google Scholar 

  89. Zamora, J.M., Grossmann, I.E.: A branch and contract algorithm for problems with concave univariate, bilinear and linear fractional terms. J. Global Optim. 14(3), 217–249 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by the Center for Integrated Operations in the Petroleum Industry, Trondheim, Norway.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bjarne Grimstad.

Appendices

Appendix 1: Test problems

This appendix holds a collection of nonconvex NLP problems used in the computational study in this paper. Most of the problems can be found in the GLOBALLib library [52] and in the test problem handbooks of Floudas [20, 21]. The same problem set was used in [59].

Problem 1

[21, Chap. 4.10].

$$\begin{aligned} \underset{\mathbf{x}}{\text {minimize}} \quad&f(\mathbf{x}) = -x_1 -x_2 \\ \text {subject to}\quad&x_2 \le 2 + 8x_{1}^{2} - 8x_{1}^{3} + 2x_{1}^{4} \\&x_2 \le 36 - 96x_{1} + 88x_{1}^{2} - 32x_{1}^{3} + 4x_{1}^{4} \\&x_1 \in [0,3], x_2 \in [0,4] \end{aligned}$$
(P1)

The global optimum of (P1) is at \(\mathbf{x}^{*} = [2.3295, 3.1785]^\textsf {T}\) with \(f(\mathbf{x}^*) = -5.5080\).

Problem 2

Problem G6 in [40].

$$\begin{aligned} \underset{\mathbf{x}}{\text {minimize}} \quad&f(\mathbf{x}) = (x_1 - 10)^3 + (x_2 - 20)^3 \\ \text {subject to}\quad&100 - (x_1 - 5)^2 - (x_2 - 5)^2 \le 0 \\&-82.81 + (x_1 - 6)^2 + (x_2 - 5)^2 \le 0 \\&x_1 \in [13,100], x_2 \in [0,100] \end{aligned}$$
(P2)

Global optimum at \(\mathbf{x}^{*} = [14.0950, 0.8430]^\textsf {T}\) with \(f(\mathbf{x}^*) = -6961.815\).

Problem 3

[42].

$$\begin{aligned} \underset{\mathbf{x}}{\text {minimize}} \quad&f(\mathbf{x}) = x_1 \\ \text {subject to}\quad&x_{1}^{2} - x_2 \le 0 \\&x_2 - x_{1}^{2}(x_1 - 2) + 10^{-5} \le 0 \\&\mathbf{x} \in [-10,10]^2 \end{aligned}$$
(P3)

Global optimum at \(\mathbf{x}^{*} = [3.0, 9.00001]^\textsf {T}\) with \(f(\mathbf{x}^*) = 3\).

Problem 4

[21, Chap. 3.5]. Problem ex3.1.4 in GlobalLib.

$$\begin{aligned} \underset{\mathbf{x}}{\text {minimize}} \quad&f(\mathbf{x}) = -2x_1 + x_2 - x_3 \\ \text {subject to}\quad&\mathbf{x}^\textsf {T}{\mathsf {A}}^\textsf {T}{\mathsf {A}} \mathbf{x} - 2 \mathbf{y}^\textsf {T}{\mathsf {A}} \mathbf{x} + ||\mathbf{y}||^2 - 0.25 ||\mathbf{b} - \mathbf{z}||^2 \ge 0 \\&x_1 + x_2 + x_3 - 4 \le 0 \\&3x_2 + x_3 - 6 \le 0 \\&x_1 \in [0,2], x_2 \in [0,10], x_3 \in [0,3] \\ \text {with data}\quad&\\ {\mathsf {A}}&= \begin{bmatrix} 0&\quad 0&\quad 1 \\ 0&\quad -1&\quad 0 \\ -2&\quad 1&\quad -1 \end{bmatrix} \\ \mathbf{b}&= [3,~0,~-4]^\textsf {T}\\ \mathbf{y}&= [1.5,~-0.5,~-5]^\textsf {T}\\ \mathbf{z}&= [0,~-1,~-6]^\textsf {T}\end{aligned}$$
(P4)

The global optimum of P4 is at \(\mathbf{x}^{*} = [0.5, 0,3]^\textsf {T}\) with \(f(\mathbf{x}^*) = -4\).

Problem 5

Himmelblau problem from [21]. Problem ex14.1.1 in GlobalLib.

$$\begin{aligned} \underset{\mathbf{x}}{\text {minimize}} \quad&f(\mathbf{x}) = x_3 \\ \text {subject to}\quad&2x_{1}^{2} + 4x_{1}x_{2} - 42x_{1} + 4x_{1}^{3} - x_{3} \le 14 \\&-2x_{1}^{2} - 4x_{1}x_{2} + 42x_{1} - 4x_{1}^{3} - x_{3} \le -14 \\&2x_{1}^{2} + 4x_{1}x_{2} - 26x_{2} + 4x_{2}^{3} - x_{3} \le 22 \\&-2x_{1}^{2} - 4x_{1}x_{2} + 26x_{2} - 4x_{2}^{3} - x_{3} \le -22 \\&\mathbf{x} \in [-5,5]^3 \end{aligned}$$
(P5)

This is a root finding problem with \(f(\mathbf{x^*}) = 0\). \(\mathbf{x}^* = [-0.3050690, -0.9133455, 0]^\textsf {T}\) is a known solution to P5.

Problem 6

An optimal design problem for a pressure vessel [43, 59].

$$\begin{aligned} \underset{\mathbf{x}}{\text {minimize}} \quad&0.6224 x_{3}x_{4} + 1.7781x_{2}x_{3}^{2} + 3.1661 x_{1}^{2}x_{4} + 19.84 x_{1}^{2}x_{3}\\ \text {subject to}\quad&-x_1 + 0.0193x_3 \le 0 \\&-x_2 + 0.00954x_3 \le 0 \\&-\pi x_{3}^{2} x_4 - (4/3)\pi x_{3}^3 + 750.1728 \le 0 \\&-240 + x_4 \le 0 \\&x_1 \in [1,1.375], x_2 \in [0.625,1], \\&x_3 \in [47.5, 52.5], x_4 \in [90,112] \end{aligned}$$
(P6)

Best known solution is \(\mathbf{x}^* = [1, 0.625, 47.5, 90]^\textsf {T}\) with \(f(\mathbf{x}^*) = 6395.5\).

Problem 7

[21]. Problem ex7.3.2 in GlobalLib.

$$\begin{aligned} \underset{\mathbf{x}}{\text {minimize}} \quad&f(\mathbf{x}) = x_4 \\ \text {subject to}\quad&x_{1}^{4} x_{2}^{4} - x_{1}^{4} - x_{2}^{4} x_{3} = 0 \\&1.4 - x_1 - 0.25 x_4 \le 0 \\&-1.4 + x_1 - 0.25 x_4 \le 0 \\&1.5 - x_2 - 0.2 x_4 \le 0 \\&-1.5 + x_2 - 0.2 x_4 \le 0 \\&0.8 - x_3 - 0.2 x_4 \le 0 \\&-0.8 + x_3 - 0.2 x_4 \le 0 \\&\mathbf{x} \in [0,5]^4 \end{aligned}$$
(P7)

The global optimum of P7 is at \(\mathbf{x}^{*} = [1.1275, 1.2820, 1.0179, 1.0899]^\textsf {T}\) with \(f(\mathbf{x}^*) = 1.0899\).

Problem 8

Mechanical design problem from [84].

$$\begin{aligned} \underset{\mathbf{x}}{\text {minimize}} \quad&f(\mathbf{x}) = 27.264(2 x_2 x_4 + x_1 x_3 - 2 x_3 x_4) \\ \text {subject to}\quad&61.01627586 - I(\mathbf{x}) \le 0 \\&8 x_1 - I(\mathbf{x}) \le 0 \\&x_1 x_2 x_4 - x_2 x_{4}^{2} + x_{1}^{2} x_3 + x_3 x_{4}^{2} - 2 x_1 x_3 x_4 - 3.5 x_3 I(\mathbf{x}) \le 0 \\&x_1 - 3 x_2 \le 0 \\&2 x_2 - x_1 \le 0 \\&x_3 - 1.5 x_4 \le 0 \\&0.5 x_4 - x_3 \le 0 \\&x_1 \in [3,20], x_2 \in [2,15], x_3 \in [0.125,0.75], x_4 \in [0.25, 1.25] \end{aligned}$$
(P8)

where \(I(\mathbf{x}) = 6x_{1}^{2}x_{2}x_{3} - 12x_{1}x_{2}x_{3}^{2} + 8x_{2}x_{3}^{3} + x_{1}^{3}x_{4} - 6x_{1}^{2}x_{3}x_{4} + 12x_{1}x_{3}^{2}x_{4} - 8x_{3}^{3}x_{4}\). The global optimum is attained at \(\mathbf{x}^{*} = [4.9542, 2, 0.125, 0.25]^\textsf {T}\) with \(f(\mathbf{x}^*) = 42.444\).

Problem 9

Test problem 1 in [20, Chap. 2.2.1]. Problem ex2.1.1 in GlobalLib.

$$\begin{aligned} \underset{\mathbf{x}}{\text {minimize}} \quad&f(\mathbf{x}) = \mathbf{c}^{\textsf {T}}\mathbf{x} - \mathbf{x}^{\textsf {T}}\mathbf{Q}\mathbf{x} \\ \text {subject to}\quad&20x_1 + 12x_2 + 11x_3 + 7x_4 + 4x_5 \le 40 \\&\mathbf{x} \in [0,1]^5 \end{aligned}$$
(P9)

where \(\mathbf{c} = [42,44,45,47,47.5]^\textsf {T}\) and \(\mathbf{Q} = 50\mathbf{I}\) (\(\mathbf{I}\) is the identity matrix). The global optimum is attained at \(\mathbf{x}^{*} = [1,1,0,1,0]^\textsf {T}\) with \(f(\mathbf{x}^*) = -17\).

Problem 10

Test problem 2 in [20, Chap. 2.2.1]. Problem ex2.1.2 in GlobalLib

$$\begin{aligned} \underset{\mathbf{x},y}{\text {minimize}} \quad&f(\mathbf{x},y) = \mathbf{c}^{\textsf {T}}\mathbf{x} - 0.5\mathbf{x}^{\textsf {T}}\mathbf{Q}\mathbf{x} - 10y\\ \text {subject to}\quad&6x_1 + 3x_2 + 3x_3 + 2x_4 + x_5 \le 6.5 \\&10x_1 + 10x_3 + y \le 20 \\&y \ge 0 \\&\mathbf{x} \in [0,1]^5 \end{aligned}$$
(P10)

where \(\mathbf{c} = -[10.5,7.5,3.5,2.5,1.5]^\textsf {T}\) and \(\mathbf{Q} = \mathbf{I}\) (\(\mathbf{I}\) is the identity matrix). The global optimum is attained at \(\mathbf{x}^{*} = [0,1,0,1,1]^\textsf {T}\) and \(y^* = 20\) with \(f(\mathbf{x}^*,y^*) = -213\).

Problem 11

[20, Chap. 3.3.1].

$$\begin{aligned} \underset{\mathbf{x}}{\text {minimize}} \quad&f(\mathbf{x}) = -25(x_1 - 2)^2 - (x_2 - 2)^2 - (x_3 - 1)^2 \\& -(x_4 - 4)^2 - (x_5 - 1)^2 - (x_6 - 4)^2 \\ \text {subject to}\quad&(x_3 - 3)^2 + x_4 \ge 4 \\&(x_5 - 3)^2 + x_6 \ge 4 \\&x_1 - 3x_2 \le 2 \\&-x_1 + x_2 \le 2 \\&x_1 + x_2 \le 6 \\&x_1 + x_2 \ge 2 \\&x_1 \in [0,6], x_2 \in [0,6], x_3 \in [1,5], \\&x_4 \in [0,6], x_5 \in [1,5], x_6 \in [0,10] \end{aligned}$$
(P11)

The global optimum of P11 is at \(\mathbf{x}^{*} = [5,1,5,0,5,10]^\textsf {T}\) with \(f(\mathbf{x}^*) = -310\).

Problem 12

[21, Chap. 5.2.4].

$$\begin{aligned} \underset{\mathbf{x}}{\text {minimize}} \quad&f(\mathbf{x}) = -x_{4}(9 - 6x_{1} - 16x_{2} - 15x_{3}) \\&\qquad \qquad -x_{5}(15 - 6x_{1} - 16x_{2} - 15x_{3}) + x_{6} - 5x_{7} \\ \text {subject to}\quad&x_{3}x_{4} + x_{3}x_{5} \le 50 \\&x_4 + x_6 \le 100 \\&x_5 + x_7 \le 200 \\&x_{4}(3x_1 + x_2 + x_3 - 2.5) - 0.5x_6 \le 0 \\&x_{5}(3x_1 + x_2 + x_3 - 1.5) + 0.5x_7 \le 0 \\&x_1 + x_2 + x_3 = 1 \\&x_1 \in [0,1], x_2 \in [0,1], x_3 \in [0,1], \\&x_4 \in [0,100], x_5 \in [0,200], \\&x_6 \in [0,100], x_7 \in [0,200] \end{aligned}$$
(P12)

The global optimum of P12 is at \(\mathbf{x}^{*} = [0,0.5,0.5,0,100,0,100]^\textsf {T}\) with \(f(\mathbf{x}^*) = -450\).

Problem 13

[20, Chap. 11.3.1].

$$\begin{aligned} \underset{\mathbf{x}}{\text {minimize}} \quad&f(\mathbf{x}) = 0.7854 x_1 x_{2}^{2} \left( 3.3333 x_{3}^{2} + 14.9334 x_3 - 43.0934\right) \\& -1.508 x_1 \left( x_{6}^{2} + x_{7}^{2}\right) + 7.477\left( x_{6}^{3} + x_{7}^{3}\right) \\& + 0.7854\left( x_{4}x_{6}^{2} + x_{5}x_{7}^{2}\right) \\ \text {subject to}\quad&x_{1}x_{2}^{2}x_{3} \ge 27 \\&x_{1}x_{2}^{2}x_{3}^{2} \ge 397.5 \\&x_{2}x_{6}^{4}x_{3}x_{4}^{-3} \ge 1.93 \\&x_{2}x_{7}^{4}x_{3}x_{5}^{-3} \ge 1.93 \\&\left[ \left( 745x_{4}x_{2}^{-1}x_{3}^{-1}\right) ^2 + 16.911\times 10^6\right] ^{0.5}\Bigg /\left( 0.1x_{6}^{3}\right) \le 1100 \\&\left[ \left( 745x_{5}x_{2}^{-1}x_{3}^{-1}\right) ^2 + 157.51\times 10^6\right] ^{0.5}\Bigg /(0.1x_{7}^{3}) \le 850 \\&x_{2}x_{3} \le 40 \\&x_{1}/x_{2} \ge 5 \\&x_{1}/x_{2} \le 12 \\&1.5x_6 - x_4 \le -1.9 \\&1.1x_7 - x_5 \le -1.9 \\&x_1 \in [2.6,3.6], x_2 \in [0.7,0.8], x_3 \in [17,28], \\&x_4 \in [7.3,8.3], x_5 \in [7.3,8.3], x_6 \in [2.9,3.9] \\&x_7 \in [5,5.5] \end{aligned}$$
(P13)

The best known solution for P13 is the point \(\mathbf{x}^{*} = [3.5,0.7,17,7.3,7.71,3.35,5.287]^\textsf {T}\) with \(f(\mathbf{x}^*) = 2994.47\). The problem can be written as a polynomially constrained problem by multiplying to remove all fractional terms in the constraints. This is possible because all variables are positively bounded.

Appendix 2: Proofs

Proposition 1

(Relaxation of bilinear terms) Consider the bilinear term \(y = x_1 x_2\), for \(x_1 \in [x_{1}^{l}, x_{1}^{u}]\) and \(x_2 \in [x_{2}^{l}, x_{2}^{u}]\). Let f be a B-spline representing the bilinear term, i.e. \(f = y\). Then, the convex combination relaxation (24) of f is equivalent to McCormick’s linear relaxation of bilinear terms (see [4, 50]).

Proof

(Proposition 1) Let \(\mathbf{x}_{1,1} = [1, x_1]^\textsf {T}\) and \(\mathbf{x}_{2,1} = [1, x_2]^\textsf {T}\) be the first degree power bases of \(x_1\) and \(x_2\). The the bilinear term can be written as \(y = \varvec{\lambda }^\textsf {T}(\mathbf{x}_{1,1} \otimes \mathbf{x}_{2,1}) = \varvec{\lambda }^\textsf {T}[1, x_1, x_2, x_1 x_2]^\textsf {T}= x_1 x_2\), for \(\varvec{\lambda }^\textsf {T}= [0, 0, 0, 1]\). Using the procedure in Sect. 2.5 one obtains the B-spline form f of y, which has four control points

$$\begin{aligned} {\mathsf {P}} = \begin{bmatrix} x_1^l&\quad x_1^l&\quad x_1^u&\quad x_1^u \\ x_2^l&\quad x_2^u&\quad x_2^l&\quad x_2^u \\ x_1^l x_2^l&\quad x_1^l x_2^u&\quad x_1^u x_2^l&\quad x_1^u x_2^u \end{bmatrix}. \end{aligned}$$
(33)

The relaxation in (24) requires four variables \(\varvec{\lambda } = [\lambda _1, \lambda _2, \lambda _3, \lambda _4]^\textsf {T}\), and is given by the equations

$$\begin{aligned} \underbrace{\begin{bmatrix} x_1^l&\quad x_1^l&\quad x_1^u&\quad x_1^u \\ x_2^l&\quad x_2^u&\quad x_2^l&\quad x_2^u \\ x_1^l x_2^l&\quad x_1^l x_2^u&\quad x_1^u x_2^l&\quad x_1^u x_2^u \\ 1&\quad 1&\quad 1&\quad 1 \end{bmatrix}}_{{\mathsf {A}}} \varvec{\lambda } = \underbrace{\begin{bmatrix} x_1 \\ x_2 \\ y \\ 1 \end{bmatrix}}_{\mathbf{b}}, \varvec{\lambda } \ge \mathbf{0}. \end{aligned}$$
(34)

\({\mathsf {A}}\) is a square matrix of full rank as long as \(x_1^l < x_1^u\) and \(x_2^l < x_2^u\), and it is possible to solve \(\varvec{\lambda } = {\mathsf {A}}^{-1}\mathbf{b}\) analytically. This yields

$$\begin{aligned} \begin{aligned} \lambda _1&= \frac{1}{\gamma } \left( y - x_2^u x_1 - x_1^u x_2 + x_1^u x_2^u \right) , \\ \lambda _2&= \frac{1}{\gamma } \left( -y + x_2^l x_1 + x_1^u x_2 - x_1^u x_2^l \right) , \\ \lambda _3&= \frac{1}{\gamma } \left( -y + x_2^u x_1 + x_1^l x_2 - x_1^l x_2^u \right) , \\ \lambda _4&= \frac{1}{\gamma } \left( y - x_2^l x_1 - x_1^l x_2 + x_1^l x_2^l \right) , \end{aligned} \end{aligned}$$
(35)

where \(\gamma = (x_1^u - x_1^l)(x_2^u - x_2^l)\). Utilizing \(\varvec{\lambda } \ge \mathbf{0}\), and the fact that \(\gamma > 0\), one obtains

$$\begin{aligned} \begin{aligned} y&\ge x_2^u x_1 + x_1^u x_2 - x_1^u x_2^u, \\ y&\le x_2^l x_1 + x_1^u x_2 - x_1^u x_2^l, \\ y&\le x_2^u x_1 + x_1^l x_2 - x_1^l x_2^u, \\ y&\ge x_2^l x_1 + x_1^l x_2 - x_1^l x_2^l, \end{aligned} \end{aligned}$$
(36)

which are precisely the linear constraints of the McCormick relaxation of \(y = x_1 x_2\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grimstad, B., Sandnes, A. Global optimization with spline constraints: a new branch-and-bound method based on B-splines. J Glob Optim 65, 401–439 (2016). https://doi.org/10.1007/s10898-015-0358-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-015-0358-4

Keywords

Navigation