Skip to main content

The oracle penalty method

Abstract

A new and universal penalty method is introduced in this contribution. It is especially intended to be applied in stochastic metaheuristics like genetic algorithms, particle swarm optimization or ant colony optimization. The novelty of this method is, that it is an advanced approach that only requires one parameter to be tuned. Moreover this parameter, named oracle, is easy and intuitive to handle. A pseudo-code implementation of the method is presented together with numerical results on a set of 60 constrained benchmark problems from the open literature. The results are compared with those obtained by common penalty methods, revealing the strength of the proposed approach. Further results on three real-world applications are briefly discussed and fortify the practical usefulness and capability of the method.

This is a preview of subscription content, access via your institution.

References

  1. 1

    Asaadi J.: A computational comparison of some non-linear programs. Math. Program. 4, 144–154 (1973)

    Article  Google Scholar 

  2. 2

    Coello C.A.C.: Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art. Comput. Method. Appl. M. 191, 1245–1287 (2002)

    Article  Google Scholar 

  3. 3

    Coit, D.W., Smith, A.E.: Penalty Guided Genetic Search for Reliability Design Optimization. Comput. Ind. Eng. 30, Special issue on genetic algorithms, pp. 895–904 (1996)

  4. 4

    Dahl H., Meeraus A., Zenios S.A.: Some financial optimization models: risk management. In: Zenios, S.A. (eds) Financial Optimization, Cambridge University Press, New York (1993)

    Google Scholar 

  5. 5

    Dorigo M., Stuetzle T.: Ant Colony Optimization. MIT Press, Cambridge (2004)

    Google Scholar 

  6. 6

    Downs J.J., Vogel E.F.: Plant-wide industrial process control problem. Comput. Chem. Eng. 17, 245–255 (1993)

    Article  Google Scholar 

  7. 7

    Duran M., Grossmann I.E.: An outer-approximation algorithm for a class of mixed-integer nonlinear programs. Math. Program. 36, 307–339 (1986)

    Article  Google Scholar 

  8. 8

    Egea J.A., Rodríguez-Fernández M., Banga J.R., Martí R.: Scatter search for chemical and bio-process optimization. J. Glob. Optim. 37, 481–503 (2007)

    Article  Google Scholar 

  9. 9

    Exler O., Schittkowksi K.: A trust region SQP algorithm for mixed-integer nonlinear programming. Optim. Lett. 3, 269–280 (2007)

    Article  Google Scholar 

  10. 10

    Exler O., Antelo L.T., Egea J.A., Alonso A.A., Banga J.R.: A Tabu search-based algorithm for mixed-integer nonlinear problems and its application to integrated process and control system design. Comput. Chem. Eng. 32, 1877–1891 (2008)

    Article  Google Scholar 

  11. 11

    Floudas C.A., Pardalos P.M., Adjiman C.S., Esposito W.R., Gumus Z.H., Harding S.T., Klepeis J.L., Meyer C.A., Stuetzle C.A.: Handbook of Test Problems in Local and Global Optimization. Kluwer Academic Publishers, Dordrecht (1999)

    Google Scholar 

  12. 12

    Floudas C.A.: Nonlinear and Mixed Integer Optimization: Fundamentals and Applications. Oxford University Press, Oxford (1995)

    Google Scholar 

  13. 13

    Floudas, C.A., Pardalos, P.M.: Collection of Test Problems for Constrained Global Optimization Algorithms. Lecture Notes in Computer Science 455, Springer, New York (1990)

  14. 14

    Goldberg D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Kluwer Academic Publishers, Boston (1989)

    Google Scholar 

  15. 15

    Glover F., Laguna M., Marti R.: Fundamentals of scatter search and path relinking. Control Cybern. 39, 653–684 (2000)

    Google Scholar 

  16. 16

    Grossmann, I.E., Kravanja, Z.: Mixed-integer nonlinear programming: A survey of algorithms and applications. The IMA Volumes in Mathematics and its Applications, vol. 93, Large Scale Optimization with Applications. Part II: Optimal Design and Control, Biegler, T.F., Coleman, T.F., (eds.), pp. 73–100, Springer, New York (1997)

  17. 17

    Gupta O.K., Ravindran V.: Branch and bound experiments in convex non-linear integer programming. Manag. Sci. 31, 1533–1546 (1985)

    Article  Google Scholar 

  18. 18

    Hadj-Alouane A.B., Bean J.C.: A genetic algorithm for the multiple choice integer program. Oper. Res. 45, 92–101 (1997)

    Article  Google Scholar 

  19. 19

    Homaifar A., Lai S.H.Y., Qi X.: Constrained optimization via genetic algorithms. Simulation 62, 242–254 (1994)

    Article  Google Scholar 

  20. 20

    Kaya C.Y., Noakes J.L.: A computational method for time-optimal control. J. Optim. Theor. Appl. 117, 69–92 (2003)

    Article  Google Scholar 

  21. 21

    Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the IEEE international conference on neural networks, Piscataway, NJ, pp. 1942–1948 (1995)

  22. 22

    Kirkpatrick S., Gelatt C.D., Vecchi M.P.: Optimization by simulated annealing. Science 220, 671–680 (1983)

    Article  Google Scholar 

  23. 23

    Manne, A.S.: GAMS/MINOS: Three examples. Technical report, Department of Operations Research, Stanford University, Stanford (1986)

  24. 24

    Morales, A.K., Quezada, C.V.: A universal electic genetic algorithm for constraint optimization. In: Proceedings of the 6th european congress on intelligent techniques and soft computing, EUFIT’98, Aachen Germany, Verlag Mainz, pp. 518–522 (1998)

  25. 25

    Michalewicz Z.: A survey of constraint handling techniques in evolutionary computation methods. In: McDonnell, J.R., Reynolds, R.G., Fogel, D.B. (eds) Proceedings of the 4th annual conference on evolutionary programming, pp. 135–155. MIT press, Cambridge (1995)

    Google Scholar 

  26. 26

    Sager, S.: mintOC, benchmark library of mixed-integer optimal control problems (http://mintoc.de) (2009)

  27. 27

    Socha K., Dorigo M.: Ant colony optimization for continuous domains. Eur. J. Oper. Res. 185, 1155–1173 (2008)

    Article  Google Scholar 

  28. 28

    Schlüter M., Egea J.A., Banga J.R.: Extended antcolony optimization for non-convex mixed integer nonlinear programming. Comput. Oper. Res. 36(7), 2217–2229 (2009)

    Article  Google Scholar 

  29. 29

    Schlüter M., Egea J.A., Antelo L.T., Alonso A.A., Banga J.R.: An extended ant colony optimization algorithm for integrated process and control system design. Ind. Eng. Chem. 48(14), 6723–6738 (2009)

    Article  Google Scholar 

  30. 30

    Schlüter, M.: MIDACO—Global optimization software for mixed integer nonlinear programming (http://www.midaco-solver.com) (2009)

  31. 31

    Smith A.E., Tate D.M.: Genetic optimization using a penalty function. In: Forrest, S. (eds) Proceedings of the 5th international conference on genetic algorithms, San Mateo, California, pp. 499–503. Morgan Kaufmann Publishers, Los Altos (1993)

    Google Scholar 

  32. 32

    Van de Braak, G.: Das Verfahren MISQP zur gemischt ganzzahligen nichtlinearen Programmierung fuer den Entwurf elektronischer Bauteile. Diploma Thesis, Department of Numerical and Instrumental Mathematics, University of Muenster, Germany (2001)

  33. 33

    Yeniay O.: Penalty function methods for constrained optimization with genetic algorithms. Math. Comput. Appl. 10, 45–56 (2005)

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Martin Schlüter.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Schlüter, M., Gerdts, M. The oracle penalty method. J Glob Optim 47, 293–325 (2010). https://doi.org/10.1007/s10898-009-9477-0

Download citation

Keywords

  • Constrained optimization
  • Global optimization
  • Penalty function
  • Stochastic metaheuristic
  • Ant colony optimization
  • MIDACO-Solver
  • Mixed integer nonlinear programming (MINLP)