Skip to main content
Log in

Using Global Optimization for a Microparticle Identification Problem with Noisy Data

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

We report some experience with optimization methods applied to an inverse light scattering problem for spherical, homogeneous particles. Such particles can be identified from experimental data using a least squares global optimization method. However, if there is significant noise in the data, the “best” solution may not correspond well to the “actual” particle. We suggest a way in which the original least squares solution may be improved by using a constrained optimization calculation which considers the position of peaks in the data. This approach is applied first to multi-angle data with varying amounts of artificially introduced noise and then to examples of single-particle experimental data patterns characterized by high noise levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.J. Wyatt (1980) ArticleTitleSome chemical, physical and optical properties of fly ash particles Applied Optics 7 975

    Google Scholar 

  2. Ulanowski, Z.J. (1988). Investigations of microbial physiology and cell structure using laser diffractometry. Ph.D. Thesis, Hatfield Polytechnic.

  3. G. Gousbet G. Grehan (1988) Optical Particle Sizing Plenum New York

    Google Scholar 

  4. Z.J. Ulanowski I.K. Ludlow (1989) ArticleTitleWater distribution, size and wall thickness in Lycoperdon pyriforme spores Mycological Research 93 28

    Google Scholar 

  5. Barth H.G., Sun, S.T. (1991). Particle-size analysis, Analytical Chemistry 63, Rl.

  6. L.A. Pieri Particlede I.K. Ludlow W.M. Waites (1993) ArticleTitleThe application of laser diffractometry to study the water content of spores of Bacillus sphaericus with different heat resistances Journal of Applied Bacteriology 74 578 Occurrence Handle8486564

    PubMed  Google Scholar 

  7. C.A.O. Nascimento R. Guardani M. Giulietti (1997) ArticleTitleUse of neural networks in the analysis of particle size distributions by laser diffraction Powder Technology 90 89 Occurrence Handle10.1016/S0032-5910(96)03192-0

    Article  Google Scholar 

  8. Hull P.G., Quinby-Hunt, M. (1997). A neural-network to extract size parameter from light-scattering data, SPIE Proceedings 2963, 448.

    Google Scholar 

  9. L.P. Bayvel A.R. Jones (1981) Electromagnetic Scattering and its Applications Applied Science Publishers London

    Google Scholar 

  10. C.F. Bohren D.R. Huffman (1983) Absorption and Scattering of Light by Small Particles Wiley New York

    Google Scholar 

  11. K. Shimizu A. Ishimaru (1990) ArticleTitleDifferential Fourier-transform technique for the inverse scattering problem Applied Optics 29 3428

    Google Scholar 

  12. M.R. Jones B.P. Curry M.Q. Brewster K.H. Leong (1994) ArticleTitleInversion of light-scattering measurements for particle size and optical constants: Theoretical study Applied Optics 33 4025

    Google Scholar 

  13. Quist G.M., Wyatt P.J. (1985). Empirical solution to the inverse light scattering problem by the optical strip – map technique. Journal of Optical Society of America A2, 1979.

  14. V.P. Maltsev V.N. Lopatin (1997) ArticleTitleParametric solution of the inverse light-scattering problem for individual spherical particles Applied Optics 36 6102

    Google Scholar 

  15. Z.J. Ulanowski Z. Wang P.H. Kaye I.K. Ludlow (1998) ArticleTitleApplication of neural networks to the inverse light scattering problem for spheres Applied Optics 37 4027

    Google Scholar 

  16. I.K. Ludlow J. Everitt (1995) ArticleTitleSystematic behaviour of the Mie scattering coefficients of spheres as a function of order Physics Review 51 2516 Occurrence Handle10.1103/PhysRevA.51.2516

    Article  Google Scholar 

  17. I.K. Ludlow J. Everitt (1996) ArticleTitleSystematic behaviour of the Mie scattering coefficients of spheres as a function of order Physics Review 53 2909

    Google Scholar 

  18. Zakovic, S. (1997). Global optimization applied to an inverse light scattering problem. Ph.D. Thesis, University of Hertfordshire.

  19. S. Zakovic Z.J. Ulanowski M.C. Bartholomew-Biggs (1998) ArticleTitleApplication of global optimization to particle identification using light scattering Inverse Problems 14 1053 Occurrence Handle10.1088/0266-5611/14/4/019 Occurrence HandleMR1642580

    Article  MathSciNet  Google Scholar 

  20. Zakovic, S., Ulanowski, Z.J., Bartholomew-Biggs, M.C. (2002). Particle identification using light scattering: A global optimization problem. Technical Report, Numerical Optimisation Centre, University of Hertfordshire.

  21. R. Mireles (1966) ArticleTitleThe inverse problem of electromagnetic theory. I. Uniqueness theorem for cylinders Journal of Mathematics and Physics (MIT) 45 179

    Google Scholar 

  22. Ludlow, I.K., Everitt, J. (submitted). The inverse Mie problem, Journal of optical society of America A.

  23. Z. Ulanowski R.S. Greenaway P.H. Kaye I.K. Ludlow (2002) ArticleTitleLaser diffractometer for single-particle scattering measurements Measurement Science and Technology 13 292–296 Occurrence Handle10.1088/0957-0233/13/3/309

    Article  Google Scholar 

  24. A. Rinnooy Kan G.T. Timmer (1987) ArticleTitleStochastic global optimization methods. Part I: Clustering methods Mathematical Programming 39 27

    Google Scholar 

  25. A. Rinnooy Kan G.T. Timmer (1987) ArticleTitleStochastic global optimization methods. Part II: Multilevel methods Mathematical Programming 39 57

    Google Scholar 

  26. D.R. Jones C.D. Perttunen B.E. Stuckman (1993) ArticleTitleLipschitzian optimization without the Lipschitz constant Journal of Optimization Theory and Applications 79 157–181 Occurrence Handle10.1007/BF00941892

    Article  Google Scholar 

  27. M.C. Bartholomew-Biggs S.C. Parkhurst S.P. Wilson. (2002) ArticleTitleUsing DIRECT to solve an aircraft routing problem Computational Optimization and Applications 21 311–323 Occurrence Handle10.1023/A:1013729320435 Occurrence HandleMR1882854

    Article  MathSciNet  Google Scholar 

  28. Dixon, L.C.W. (1996). personal communication.

  29. F. Robillard A.J. Patitsas (1974) ArticleTitleDetermination of size, size distribution and refractive index of Dow latexes EP-1358-38 by the Mie scattering method Canadian Journal of Physics 52 1571

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. C. Bartholomew-Biggs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bartholomew-Biggs, M.C., Ulanowski, Z.J. & Zakovic, S. Using Global Optimization for a Microparticle Identification Problem with Noisy Data. J Glob Optim 32, 325–347 (2005). https://doi.org/10.1007/s10898-004-1943-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-004-1943-0

Keywords

Navigation