Skip to main content
Log in

Coumarin-Modified Starch Fluorescent Nanoparticles as Sensor of Fe3+ and Zn2+ ions Utilizing Dynamic Quenching and Chelation Mechanisms

  • Research
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Zinc and iron are two essential trace minerals that play a pivotal role in maintaining optimal health and well-being in the human body. Despite being required in relatively small quantities, their significance can be understated as they participate in a wide array of critical physiological processes such as oxygen transport, DNA synthesis, controlling nutrient availability, etc. Understanding the distribution and behavior of these ions in natural water bodies is essential for assessing water quality, studying ecological processes, and managing environmental impacts. In this study, we have developed a dual fluorescence probe using starch which was functionalized with coumarin derivatives, for efficient detection of Fe3+ and Zn2+ ions. This structure led a self-assembled starch/coumarin (SC) fluorescent nanoparticles with strong fluorescence intensity under ultraviolet light (365 nm). The quenching effect of Fe3+ on the SC fluorescent probe enabled efficient specific detection of Fe3+. Furthermore, Zn2+ ions increased fluorescence intensity of coumarin compounds (λemission = 459). This phenomenon occurs when the coumarin compound forms a complex or interacts with the zinc ion, resulting in enhanced fluorescence emission. In summary, the developed fluorescent probe offered a promising approach for sensitive and specific detection of iron and zinc ions in aqueous solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The datasets generated and/or analyzed during the current study are not publicly available at this time as the data form part of an ongoing study. However, the datasets are available from the corresponding author (Mehdi Salami-Kalajahi, m.salami@sut.ac.ir) on reasonable request.

References

  1. De R, Mahata MK, Kim KT (2022) Structure-based varieties of polymeric nanocarriers and influences of their Physicochemical properties on Drug Delivery profiles. Adv Sci 9:2105373. https://doi.org/10.1002/advs.202105373

    Article  CAS  Google Scholar 

  2. Javanbakht F, Najafi H, Jalili K, Salami-Kalajahi M (2023) A review on photochemical sensors for lithium ion detection: relationship between structure and performance. J Mater Chem A 11:26371–26392. https://doi.org/10.1039/D3TA06113B

    Article  CAS  Google Scholar 

  3. Dehghani B, Hosseini MS, Salami-Kalajahi M (2020) Neutral pH monosaccharide receptor based on boronic acid decorated poly(2-hydroxyethyl methacrylate): spectral methods for determination of glucose-binding and ionization constants. Microchem J 157:105112. https://doi.org/10.1016/j.microc.2020.105112

    Article  CAS  Google Scholar 

  4. Shin J, Jang Y (2023) Rational Design and Engineering of Polypeptide/Protein vesicles for Advanced Biological Applications. J Mater Chem B 11:8834–8847. https://doi.org/10.1039/D3TB01103H

    Article  CAS  PubMed  Google Scholar 

  5. Srivastava N, Choudhury AR (2022) Microbial polysaccharide-based nanoformulations for nutraceutical delivery. ACS Omega 7:40724–40739. https://doi.org/10.1021/acsomega.2c06003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ayivi RD, Adesanmi BO, McLamore ES, Wei J, Obare SO (2023) Molecularly imprinted plasmonic sensors as nano-transducers: an effective approach for environmental monitoring applications. Chemosensors 11:203. https://doi.org/10.3390/chemosensors11030203

    Article  CAS  Google Scholar 

  7. Lafzi F, Hussein AS, Kilic H, Bayindir S (2023) The thioacetal-modified phenothiazine as a novel colorimetric and fluorescent chemosensor for mercury in aqueous media. J Photochem Photobiol A-Chem 444:114958. https://doi.org/10.1016/j.jphotochem.2023.114958

    Article  CAS  Google Scholar 

  8. Gheitarani B, Golshan M, Hosseini MS, Salami-Kalajahi M (2022) Reflectance and photophysical properties of rhodamine 6G/2-(4-methyl-2-oxo-2H-chromen-7-yloxy) acetic acid as cold hybrid colorant. Sci Rep 12:6145. https://doi.org/10.1038/s41598-022-10001-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Li D, Liu A, Xing Y, Li Z, Luo Y, Zhao S, Li J (2023) A smart chemosensor with different response mechanisms to multi-analytes: chromogenic and fluorogenic recognition of Cu2+, Fe3+, and Zn2+. Dyes Pigm 213:111180. https://doi.org/10.1016/j.dyepig.2023.111180

    Article  CAS  Google Scholar 

  10. Kaur M, Yusuf M, Garg D, Malik A, Kim KH (2022) Aluminum-based Metal-Organic Framework fluorescent sensor for sensitive and selective detection of Zn2 + ions in an aqueous medium. New J Chem 46:18911–18916. https://doi.org/10.1039/D2NJ03911G

    Article  Google Scholar 

  11. Ullah MI, Alameen AAM, Al-Oanzi ZH, Eltayeb LB, Atif M, Munir MU, Ejaz H Biological Role of Zinc in Liver cirrhosis: an updated review, Biomedicines 2023, 11, 1094. https://doi.org/10.3390/biomedicines11041094

  12. Górska A, Markiewicz-Gospodarek A, Markiewicz R, Chilimoniuk Z, Borowski B, Trubalski M, Czarnek K (2023) Distribution of Iron, Copper, Zinc and Cadmium in Glia, their influence on glial cells and relationship with neurodegenerative diseases. Brain Sci 13:911. https://doi.org/10.3390/brainsci13060911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. He X, Ding F, Sun X, Zheng Y, Xu W, Ye L, Shen J (2021) Reversible chemosensor for bioimaging and biosensing of zn (II) and hpH in cells, larval zebrafish, and plants with dual-channel fluorescence signals. Inorg Chem 60:5563–5572. https://doi.org/10.1021/acs.inorgchem.0c03456

    Article  CAS  PubMed  Google Scholar 

  14. He X, Xie Q, Fan J, Xu C, Xu W, Li Y, Shen J (2020) Dual-functional chemosensor with colorimetric/ratiometric response to Cu (II)/Zn (II) ions and its applications in bioimaging and molecular logic gates. Dyes Pigm 177:108255. https://doi.org/10.1016/j.dyepig.2020.108255

    Article  CAS  Google Scholar 

  15. Wang Q, Lv H, Ding F, Jin Z, Liu Y, Sun X, He X (2021) Multifunctional chemosensor for tracing Ga (III), hypochlorite and pH change with bioimaging in living cells, Pseudomonas aeruginosa and Zebrafish. Sens Actuat B-Chem 345:130346. https://doi.org/10.1016/j.snb.2021.130346

    Article  CAS  Google Scholar 

  16. Golshan M, Gheitarani B, Salami-Kalajahi M, Hosseini MS (2022) Synthesis and characterization of fluorescence poly(amidoamine) dendrimer-based pigments. Sci Rep 12:15180. https://doi.org/10.1038/s41598-022-19712-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Safavi-Mirmahalleh S-A, Golshan M, Gheitarani B, Hosseini MS, Salami-Kalajahi M (2023) A review on applications of coumarin and its derivatives in preparation of photo-responsive polymers. Eur Polym J 198:112430. https://doi.org/10.1016/j.eurpolymj.2023.112430

    Article  CAS  Google Scholar 

  18. Wani SUD, Ali M, Mehdi S, Masoodi MH, Zargar MI, Shakeel F (2023) A review on chitosan and alginate-based microcapsules: mechanism and applications in drug delivery systems. Int J Biol Macromol 248:125875. https://doi.org/10.1016/j.ijbiomac.2023.125875

    Article  CAS  PubMed  Google Scholar 

  19. Ul-Islam M, Alabbosh KF, Manan S, Khan S, Ahmad F, Ullah MW (2023) Chitosan-based Nanostructured Biomaterials: synthesis, Properties, and Biomedical Applications. Adv Ind Eng Polym Res. https://doi.org/10.1016/j.aiepr.2023.07.002

    Article  Google Scholar 

  20. Kumar A, Sood A, Agrawal G, Thakur S, Thakur VK, Tanaka M, Han SS (2023) Polysaccharides, proteins, and synthetic polymers based multimodal hydrogels for various biomedical applications: a review. Int J Biol Macromol 247:125606. https://doi.org/10.1016/j.ijbiomac.2023.125606

    Article  CAS  PubMed  Google Scholar 

  21. Singh S, Sharma PK, Malviya R, Gupta A (2023) Modified polysaccharides and their Biomedical Applications: Advancement and Strategies. Curr Mater Sci 16:316–351. https://doi.org/10.2174/2666145416666221208150926

    Article  CAS  Google Scholar 

  22. Li J, Zhou M, Cheng F, Lin Y, Shi L, Zhu P (2022) Preparation of oxidized corn starch with high degree of oxidation by fenton-like oxidation assisted with ball milling. Mater Today Commun 22:100793. https://doi.org/10.1016/j.mtcomm.2019.100793

    Article  CAS  Google Scholar 

  23. Zhang S, Zhang Y, Wang X, Wang Y (2009) High Carbonyl Content Oxidized Starch prepared by Hydrogen Peroxide and its thermoplastic application. Starch J 61:646–655. https://doi.org/10.1002/star.200900130

    Article  CAS  Google Scholar 

  24. Dang X, Chen H, Shan Z, Zhen W, Mao, Yang (2019) The oxidation of potato starch by Electro-Fenton system in the presence of Fe(II) ions. Int J Biol Macromol 121:113–119. https://doi.org/10.1016/j.ijbiomac.2018.10.012

    Article  CAS  PubMed  Google Scholar 

  25. Moreno O, Cárdenas J, Atarés L, Chiralt A (2017) Influence of starch oxidation on the functionality of starch-gelatin based active films. Carbohydr Polym 178:147–158. https://doi.org/10.1016/j.carbpol.2017.08.128

    Article  CAS  PubMed  Google Scholar 

  26. Gheitarani B, Golshan M, Safavi-Mirmahalleh S-A, Salami-Kalajahi M, Hosseini MS, Alizadeh AA (2023) Fluorescent polymeric sensors based on N-(rhodamine-6G) lactam-N’-allyl-ethylenediamine and 7-(allyloxy)-2H-chromen-2-one for Fe3 + ion detection, colloids Surf. A-Physicochem Eng Asp 656:130473. https://doi.org/10.1016/j.colsurfa.2022.130473

    Article  CAS  Google Scholar 

  27. Yang J, Gao C, Lü S, Zhang X, Yu C, Liu M (2014) Physicochemical characterization of amphiphilic nanoparticles based on the novel starch–deoxycholic acid conjugates and self-aggregates. Carbohydr Polym 102:838–845. https://doi.org/10.1016/j.carbpol.2013.10.081

    Article  CAS  PubMed  Google Scholar 

  28. Sharifzadeh E, Salami-Kalajahi M, Hosseini MS, Aghjeh MKR (2017) Synthesis of silica Janus nanoparticles by buoyancy effect-induced desymmetrization process and their placement at the PS/PMMA interface. Colloid Polym Sci 295:25–36. https://doi.org/10.1007/s00396-016-3977-5

    Article  CAS  Google Scholar 

  29. Liu Z, Li N, Liu P, Qin Z, Jiao T (2022) Highly sensitive detection of iron ions in aqueous solutions using fluorescent chitosan nanoparticles functionalized by rhodamine B. ACS Omega 7:5570–5577. https://doi.org/10.1021/acsomega.1c07071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lohani CR, Lee KH (2010) The effect of absorbance of Fe3 + on the detection of Fe3 + by fluorescent chemical sensors. Sens Actuat B-Chem 143:649–654. https://doi.org/10.1016/j.snb.2009.10.004

    Article  CAS  Google Scholar 

  31. Lohani CR, Kim JM, Lee KH (2009) Facile synthesis of anthracene-appended amino acids as highly selective and sensitive fluorescent Fe3 + ion sensors, Bioorg. Med Chem Lett 19:6069–6073. https://doi.org/10.1016/j.bmcl.2009.09.036

    Article  CAS  Google Scholar 

  32. Ma C, Ma Z, He Z, Wang X, Zhao L, Chen X (2023) A hydrophilic polymer based on alkoxyl chain modified fluorene: the novel fluorescence colorimetric sensor for Fe3+, Fe2+, and Cu2 + in aqueous media. J Macromol Sci A 60:397–408. https://doi.org/10.1080/10601325.2023.2210165

    Article  CAS  Google Scholar 

  33. Song ZK, Dong B, Lei GJ, Peng MJ, Guo Y (2013) Novel selective fluorescent probes for sensing Zn2 + ions based on a coumarin Schiff-base. Tetrahed Lett 54:4945–4949. https://doi.org/10.1016/j.tetlet.2013.07.015

    Article  CAS  Google Scholar 

  34. Mehta PK, Oh ET, Park HJ, Lee KH (2017) Ratiometric fluorescent probe based on symmetric peptidyl receptor with picomolar affinity for Zn2 + in aqueous solution. Sens Actuat B-Chem 245:996–1003. https://doi.org/10.1016/j.snb.2017.01.154

    Article  CAS  Google Scholar 

  35. Wang L, Li W, Zhi W, Huang Y, Han J, Wang Y, Ni L (2018) A new coumarin schiff based fluorescent-colorimetric chemosensor for dual monitoring of Zn2 + and Fe3 + in different solutions: an application to bio-imaging. Sens Actuat B-Chem 260:243–254. https://doi.org/10.1016/j.snb.2017.12.200

    Article  CAS  Google Scholar 

  36. Johnson AD, Curtis RM, Wallace KJ Low molecular weight fluorescent probes (LMFPs) to detect the group 12 metal triad. Chemosensors 2019, 7, 22. https://doi.org/10.3390/chemosensors7020022

  37. Kamaci M (2023) Poly (Azomethine-urethane)-based fluorescent Chemosensor for the detection of Cr3 + cations in different water samples. J Fluorescence 33:53–59. https://doi.org/10.1007/s10895-022-03037-7

    Article  CAS  Google Scholar 

  38. Wang L, Li W, Zhi W, Huang Y, Han J, Wang Y, Ni L (2018) A new coumarin schiff based fluorescent-colorimetric chemosensor for dual monitoring of Zn2 + and Fe3 + in different solutions: an application to bio-imaging. Sens Actuat B-Chemical 260:243–254. https://doi.org/10.1016/j.snb.2017.12.200

    Article  CAS  Google Scholar 

Download references

Funding

No funding was received for this work.

Author information

Authors and Affiliations

Authors

Contributions

Seyyed-Mahdi Alavifar: Methodology, Formal Analysis, Investigation, Writing – Original Draft, Visualization. Marzieh Golshan: Validation, Formal Analysis, Investigation, Writing – Original Draft, Visualization. Mahdi Salami Hosseini: Validation, Resources, Visualization, Supervision. Mehdi Salami-Kalajahi: Conceptualization, Validation, Resources, Writing – Review & Editing, Visualization, Supervision, Funding Acquisition.

Corresponding author

Correspondence to Mehdi Salami-Kalajahi.

Ethics declarations

Ethical Approval

No human or animal studies were performed.

Supporting Information

UV–vis of Fe3+ and SC, 1 H NMR spectra of SO, CNH2, and SC.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alavifar, SM., Golshan, M., Hosseini, M.S. et al. Coumarin-Modified Starch Fluorescent Nanoparticles as Sensor of Fe3+ and Zn2+ ions Utilizing Dynamic Quenching and Chelation Mechanisms. J Fluoresc (2024). https://doi.org/10.1007/s10895-024-03752-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10895-024-03752-3

Keywords

Navigation