Skip to main content
Log in

Thiourea Functionalised Receptor for Selective Detection of Mercury Ions and its Application in Serum Sample

  • RESEARCH
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A thiourea functionalised fluorescent probe 1-phenyl-3-(pyridin-4-yl)thiourea was synthesized and utilised as a fluorescent turn-on chemosensor for the selective recognition of Hg2+ ion over competitive metal ions including Na+, Mn2+, Li+, Cr2+, Ni2+, Ca2+, Cd2+, Mg2+, K+, Co2+, Cu2+, Zn2+, Al3+ and Fe2+ ions based on the inter-molecular charge transfer (ICT). Intriguingly, the receptor demonstrated unique sensing capabilities for Hg2+ in DMSO: H2O (10:90, v/v). The addition of Hg2+ ions to the sensor resulted in a blue shift in the absorption intensity and also enhancement in fluorescence intensity at 435 nm. Fluorescence emission intensity increased linearly with Hg2+ concentration ranging from 0 to 80 µL. The detection limit and binding constant were determined as 0.134 × 10–6 M and 1.733 × 107 M−1, respectively. The sensing behavior of Hg2+ was further examined using DLS, SEM and FTIR. The probe could detect Hg2+ ions across a wide pH range. Furthermore, the receptor L demonstrated good sensing performance for Hg2+ in bovine serum albumin and actual water samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 2
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

All data generated during this study are included in this published article.

References

  1. Mako TL, Racicot JM, Levine M (2018) Supramolecular luminescent sensors. Chem Rev 119(1):322–477. https://doi.org/10.1021/acs.chemrev.8b00260

    Article  CAS  PubMed  Google Scholar 

  2. Chua MH, Zhou H, Zhu Q, Tang BZ, Xu JW (2021) Recent advances in cation sensing using aggregation-induced emission. Mater Chem Front 5(2):659–708. https://doi.org/10.1039/D0QM00607F

    Article  CAS  Google Scholar 

  3. Wu H, Tong C (2019) Nitrogen-and sulfur-codoped carbon dots for highly selective and sensitive fluorescent detection of Hg2+ ions and sulfide in environmental water samples. J Agric Food Chem 67(10):2794–2800. https://doi.org/10.1021/acs.jafc.8b07176

    Article  CAS  PubMed  Google Scholar 

  4. Pokhrel LR, Ettore N, Jacobs ZL, Zarr A, Weir MH, Scheuerman PR, Kanel SR, Dubey B (2017) Novel carbon nanotube (CNT)-based ultrasensitive sensors for trace mercury (II) detection in water: A review. Sci Total Environ 574:1379–1388. https://doi.org/10.1016/j.scitotenv.2016.08.055

    Article  CAS  PubMed  Google Scholar 

  5. Kar SR, Dash PP, Panda SN, Mohanty P, Mohanty D, Barick AK, Sahoo SK, Mohapatra P, Jali BR (2023) A Formyl Chromone Based Schiff Base Derivative: An Efficient Colorimetric and Fluorescence Chemosensor for the Selective Detection of Hg2+ Ions. J Fluoresc 1–13. https://doi.org/10.1007/s10895-023-03500-z

  6. Liu C, Chen X, Zong B, Mao S (2019) Recent advances in sensitive and rapid mercury determination with graphene-based sensors. J Mater Chem A 7(12):6616–6630. https://doi.org/10.1039/C9TA01009B

    Article  CAS  Google Scholar 

  7. Yuan ZH, Yang YS, Lv PC, Zhu HL (2022) Recent progress in small-molecule fluorescent probes for detecting mercury ions. Crit Rev Anal Chem 52(2):250–274. https://doi.org/10.1080/10408347.2020.1797466

    Article  CAS  PubMed  Google Scholar 

  8. Gul Z, Ullah S, Khan S, Ullah H, Khan MU, Ullah M, Ali S, Altaf AA (2024) Recent progress in nanoparticles based sensors for the detection of mercury (II) ions in environmental and biological samples. Crit Rev Anal Chem 54(1):44–60. https://doi.org/10.1080/10408347.2022.2049676

    Article  CAS  PubMed  Google Scholar 

  9. Pavithra KG, SundarRajan P, Kumar PS, Rangasamy G (2023) Mercury sources, contaminations, mercury cycle, detection and treatment techniques: A review. Chemosphere 312:137314. https://doi.org/10.1016/j.chemosphere.2022.137314

    Article  CAS  PubMed  Google Scholar 

  10. Krishnan U, Manickam S, Iyer SK (2024) Turn-off fluorescence of imidazole-based sensor probe for mercury ions. Sens diagn 3(1):87–94. https://doi.org/10.1039/D3SD00146F

    Article  CAS  Google Scholar 

  11. Liu Y, Ouyang Q, Li H, Chen M, Zhang Z, Chen Q (2018) Turn-on fluoresence sensor for Hg2+ in food based on FRET between aptamers-functionalized upconversion nanoparticles and gold nanoparticles. J Agric Food Chem 66(24):6188–6195. https://doi.org/10.1021/acs.jafc.8b00546

    Article  CAS  PubMed  Google Scholar 

  12. Tang L, Yu H, Zhong K, Gao X, Li J (2019) An aggregation-induced emission-based fluorescence turn-on probe for Hg2+ and its application to detect Hg2+ in food samples. RSC Adv 9(40):23316–23323. https://doi.org/10.1039/C9RA04440J

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhu N, Xu J, Ma Q, Geng Y, Li L, Liu S, Liu S, Wang G (2022) Rhodamine-based fluorescent probe for highly selective determination of Hg2+. ACS Omega 7(33):29236–29245. https://doi.org/10.1021/acsomega.2c03336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tang W, Bai X, Zhou Y, Sonne C, Wu M, Lam SS, Hintelmann H, Mitchell CP, Johs A, Gu B, Nunes L (2024) A hidden demethylation pathway removes mercury from rice plants and mitigates mercury flux to food chains. Nat Food 1–11. https://doi.org/10.1038/s43016-023-00910-x

  15. Thakuri A, Bhosle AA, Hiremath SD, Banerjee M, Chatterjee A (2024) A carbon dots-MnO2 nanosheet-based turn-on pseudochemodosimeter as low-cost probe for selective detection of hazardous mercury ion contaminations in water. J Hazard Mater 133998. https://doi.org/10.1016/j.jhazmat.2024.133998

  16. Dash PP, Mohanty P, Behura R, Behera S, Singla P, Sahoo SC, Sahoo SK, Jali BR (2023) Detection of moisture in DMSO and raw food products by using an anthracene-based fluorescence OFF-ON chemosensor. J Photochem Photobiol A 440:114650. https://doi.org/10.1016/j.jphotochem.2023.114650

    Article  CAS  Google Scholar 

  17. Dash PP, Patel DA, Mohanty P, Behura R, Behera S, Sahoo SK, Jali BR (2023) Advances on chromo-fluorogenic sensing of copper (II) with Schiff bases. Inorganica Chim Acta 121635. https://doi.org/10.1016/j.ica.2023.121635

  18. Mohanty P, Behura R, Bhardwaj V, Dash PP, Sahoo SK, Jali BR (2022) Recent advancement on chromo-fluorogenic sensing of aluminum (III) with Schiff bases. Trends Environ Anal Chem 34:e00166. https://doi.org/10.1016/j.teac.2022.e00166

    Article  CAS  Google Scholar 

  19. Wang JH, Liu YM, Dong ZM, Chao JB, Wang H, Wang Y, Shuang S (2020) New colorimetric and fluorometric chemosensor for selective Hg2+ sensing in a near-perfect aqueous solution and bio-imaging. J Hazard Mater 382:121056. https://doi.org/10.1016/j.jhazmat.2019.121056

    Article  CAS  PubMed  Google Scholar 

  20. Kraithong S, Panchan W, Charoenpanich A, Sirirak J, Sahasithiwat S, Swanglap P, Promarak V, Thamyongkit P, Wanichacheva N (2020) A method to detect Hg2+ in vegetable via a “Turn–ON” Hg2+–Fluorescent sensor with a nanomolar sensitivity. J Photochem Photobiol 389:112224. https://doi.org/10.1016/j.jphotochem.2019.112224

    Article  CAS  Google Scholar 

  21. Rani P, Chahal S, Singh R, Kumar S, Kumar P, Sindhu J (2023) Rationally designed novel phenazine based chemosensor with real time Hg2+ sensing application. J Mol Struct 1293:136150. https://doi.org/10.1016/j.molstruc.2023.136150

    Article  CAS  Google Scholar 

  22. Li C, Niu Q, Wang J, Wei T, Li T, Chen J, Qin X, Yang Q (2020) Bithiophene-based fluorescent sensor for highly sensitive and ultrarapid detection of Hg2+ in water, seafood, urine and live cells. Spectrochim Acta A Mol Biomol Spectrosc 233:118208. https://doi.org/10.1016/j.saa.2020.118208

    Article  CAS  PubMed  Google Scholar 

  23. Guo NWH, Peng L, Chen Y, Liu Y, Li C, Zhang H, Yang W (2022) A novel ratiometric fluorescence sensor based on lanthanide-functionalized MOF for Hg2+ detection. Talanta 250:123710. https://doi.org/10.1016/j.talanta.2022.123710

    Article  CAS  Google Scholar 

  24. Bu F, Zhao B, Kan W, Ding L, Liu T, Wang L, Song B, Wang W, Deng Q (2020) An ESIPT characteristic “turn-on” fluorescence sensor for Hg2+ with large Stokes shift and sequential “turn-off” detection of S2–as well as the application in living cells. J Photochem Photobiol A: Chem 387:112165. https://doi.org/10.1016/j.jphotochem.2019.112165

    Article  CAS  Google Scholar 

  25. Mohanty P, Dash PP, Naik S, Behura R, Mishra M, Sahoo H, Sahoo SK, Barick AK, Jali BR (2023) A thiourea-based fluorescent turn-on chemosensor for detecting Hg2+, Ag+ and Au3+ in aqueous medium. J Photochem Photobiol A: Chem 437:114491. https://doi.org/10.1016/j.jphotochem.2022.114491

    Article  CAS  Google Scholar 

  26. Mohanty P, Mandal A, Jali BR, Nath B (2022) Conformational polymorphs and solvates of 1-(6-aminopyridin2-yl)-3-phenylthiourea. J Mol Struct 1261:132859. https://doi.org/10.1016/j.molstruc.2022.132859

    Article  CAS  Google Scholar 

  27. Khan E, Khan S, Gul Z, Muhammad M (2021) Medicinal importance, coordination chemistry with selected metals (cu, Ag, au) and Chemosensing of Thiourea derivatives. A review Crit Rev Anal Chem 51(8):812–834. https://doi.org/10.1080/10408347.2020.1777523

    Article  CAS  PubMed  Google Scholar 

  28. Al-Saidi HM, Khan S (2024) Recent advances in thiourea based colorimetric and fluorescent chemosensors for detection of anions and neutral analytes: a review. Crit Rev Anal Chem 54(1):93–109. https://doi.org/10.1080/10408347.2022.2063017

    Article  CAS  PubMed  Google Scholar 

  29. Gomez-Vega J, Vasquez-Cornejo A, Juárez-Sánchez O, Corona-Martínez DO, Ochoa-Terán A, López-Gastelum KA, Sotelo-Mundo RR, Santacruz-Ortega H, Gálvez-Ruiz JC, Pérez-González R, Lara KO (2024) Thiourea-Based Receptors for Anion Recognition and Signaling. ACS Omega 9(4):4412–4422. https://doi.org/10.1021/acsomega.3c06861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rajasekar M, Ranjitha V, Rajasekar K (2023) Recent advances in fluorescent-based cation sensors for biomedical applications. Results Chem 5:100850. https://doi.org/10.1016/j.rechem.2023.100850

    Article  CAS  Google Scholar 

  31. Muhammad M, Khan S, Shehzadi SA, Gul Z, Al-Saidi HM, Kamran AW, Alhumaydhi FA (2022) Recent advances in colorimetric and fluorescent chemosensors based on thiourea derivatives for metallic cations: A review. Dyes Pigm 205:110477. https://doi.org/10.1016/j.dyepig.2022.110477

    Article  CAS  Google Scholar 

  32. Behura R, Dash PP, Mohanty P, Behera S, Mohanty M, Dinda R, Behera SK, Barick AK, Jali BR (2022) A Schiff base luminescent chemosensor for selective detection of Zn2+ in aqueous medium. J Mol Struct 1264:133310. https://doi.org/10.1016/j.molstruc.2022.133310

    Article  CAS  Google Scholar 

  33. Behura R, Mohanty P, Sahu G, Dash PP, Behera S, Dinda R, Hota PR, Sahoo H, Bhaskaran R, Barick AK, Mohapatra P (2023) A Highly Selective Schiff base Fluorescent Sensor for Zn2+, Cd2+ and Hg2+ based on 2, 4-dinitrophenylhydrazine Derivative. Inorg Chem Commun 110959. https://doi.org/10.1016/j.inoche.2023.110959

  34. Pan Z, Xu Z, Chen J, Hu L, Li H, Zhang X, Gao X, Wang M, Zhang J (2020) Coumarin thiourea-based fluorescent turn-on Hg2+ probe that can be utilized in a broad pH range 1–11. J Fluoresc 30:505–514. https://doi.org/10.1007/s10895-020-02517-y

    Article  CAS  PubMed  Google Scholar 

  35. Liu Y, Yang L, Li L, Liang X, Li S, Fu Y (2020) A dual thiourea-appended perylenebisimide “turn-on” fluorescent chemosensor with high selectivity and sensitivity for Hg2+ in living cells. Spectrochim Acta A Mol Biomol Spectrosc 241:118678. https://doi.org/10.1016/j.saa.2020.118678

    Article  CAS  PubMed  Google Scholar 

  36. Shyamal M, Maity S, Maity A, Maity R, Roy S, Misra A (2018) Aggregation induced emission based “turn-off” fluorescent chemosensor for selective and swift sensing of mercury (II) ions in water. Sens Actuators B Chem 263:347–359. https://doi.org/10.1016/j.snb.2018.02.130

    Article  CAS  Google Scholar 

  37. Shan Y, Yao W, Liang Z, Zhu L, Yang S, Ruan Z (2018) Reaction-based AIEE-active conjugated polymer as fluorescent turn on probe for mercury ions with good sensing performance. Dyes Pigm 156:1–7. https://doi.org/10.1016/j.dyepig.2018.03.060

    Article  CAS  Google Scholar 

  38. Geng F, Jiang X, Wang Y, Shao C, Wang K, Qu P, Xu M (2018) DNA-based dual fluorescence signals on and ratiometric mercury sensing in fetal calf serum with simultaneous excitation. Sens Actuators B Chem 260:793–799. https://doi.org/10.1016/j.snb.2018.01.100

    Article  CAS  Google Scholar 

  39. Gan Z, Hu X, Huang X, Li Z, Zou X, Shi J, Zhang W, Li Y, Xu Y (2021) A dual-emission fluorescence sensor for ultrasensitive sensing mercury in milk based on carbon quantum dots modified with europium (III) complexes. Sens Actuators B: Chem 328:128997. https://doi.org/10.1016/j.snb.2020.128997

    Article  CAS  Google Scholar 

  40. Bayindir S (2019) A simple rhodanine-based fluorescent sensor for mercury and copper: The recognition of Hg2+ in aqueous solution, and Hg2+/Cu2+ in organic solvent. J Photochem Photobiol A: Chem 372:235–244. https://doi.org/10.1016/j.jphotochem.2018.12.021

    Article  CAS  Google Scholar 

  41. Kaewnok N, Kraithong S, Mahaveero T, Maitarad P, Sirirak J, Wanichacheva N, Swanglap P (2022) Silver nanoparticle incorporated colorimetric/fluorescence sensor for sub-ppb detection of mercury ion via plasmon-enhanced fluorescence strategy. J Photochem Photobiol A Chem 433:114140. https://doi.org/10.1016/j.jphotochem.2022.114140

    Article  CAS  Google Scholar 

  42. Malek A, Bera K, Biswas S, Perumal G, Das AK, Doble M, Thomas T, Prasad E (2019) Development of a next-generation fluorescent turn-on sensor to simultaneously detect and detoxify mercury in living samples. Anal Chem 91(5):3533–3538. https://doi.org/10.1021/acs.analchem.8b05268

    Article  CAS  PubMed  Google Scholar 

  43. Eremina AA, Kinzhalov MA, Katlenok EA, Smirnov AS, Andrusenko EV, Pidko EA, Suslonov VV, Luzyanin KV (2020) Phosphorescent iridium (III) complexes with acyclic diaminocarbene ligands as chemosensors for mercury. Inorg Chem 59(4):2209–2222. https://doi.org/10.1021/acs.inorgchem.9b02833

    Article  CAS  PubMed  Google Scholar 

  44. Sasan S, Chopra T, Gupta A, Tsering D, Kapoor KK, Parkesh R (2022) Fluorescence “turn-off” and Colorimetric Sensor for Fe2+, Fe3+, and Cu2+ Ions Based on a 2, 5, 7-Triarylimidazopyridine Scaffold. ACS Omega 7(13):11114–11125. https://doi.org/10.1021/acsomega.1c07193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Muramatsu T, Okado Y, Traeger H, Schrettl S, Tamaoki N, Weder C, Sagara Y (2021) Rotaxane-based dual function mechanophores exhibiting reversible and irreversible responses. J Am Chem Soc 143(26):9884–9892. https://doi.org/10.1021/jacs.1c03790

    Article  CAS  PubMed  Google Scholar 

  46. Yang SL, Li G, Guo MY, Liu WS, Bu R, Gao EQ (2021) Positive cooperative protonation of a metal–organic framework: pH-responsive fluorescence and proton conduction. J Am Chem Soc 143(23):8838–8848. https://doi.org/10.1021/jacs.1c03432

    Article  CAS  PubMed  Google Scholar 

  47. Boobalan T, Sethupathi M, Sengottuvelan N, Kumar P, Balaji P, Gulyás B, Padmanabhan P, Selvan ST, Arun A (2020) Mushroom-derived carbon dots for toxic metal ion detection and as antibacterial and anticancer agents. ACS Appl Nano Mater 3(6):5910–5919. https://doi.org/10.1021/acsanm.0c01058

    Article  CAS  Google Scholar 

  48. Zakharenkova SA, Dobrovolskii AA, Garshev AV, Statkus MA, Beklemishev MK (2021) Chlorophyll-based self-assembled nanostructures for fluorescent sensing of aminoglycoside antibiotics. ACS Sustain Chem Eng 9(9):3408–3415. https://doi.org/10.1021/acssuschemeng.0c08223

    Article  CAS  Google Scholar 

  49. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima TY, Honda O, Kitao H, Nakai T, Jr JAVM, Peralta JE, Ogliaro FO, Bearpark MJ, Heyd J, Brothers EN, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas ÃDN, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09. Gaussian Inc, Wallingford, CT, USA

  50. Cancès E, Mennucci B, Tomasi J (1997) A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and nisotropic dielectrics. J Chem Phys 107:3032–3041. https://doi.org/10.1063/1.474659

    Article  Google Scholar 

  51. Miertuš S, Scrocco E, Tomasi J (1981) Electrostatic interaction of a solute with a continuum. A direct utilization of AB initio molecular potentials for the prevision of solvent effects. Chem Phys 55:117–129. https://doi.org/10.1016/0301-0104(81)85090-2

    Article  Google Scholar 

  52. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B: Condens Matter Mater Phys 37:785–789. https://doi.org/10.1103/physrevb.37.785

    Article  CAS  Google Scholar 

  53. Assiri MA, Hussain S, Junaid HM, Waseem MT, Hamad A, Ajab H, Iqbal J, Rauf W, Shahzad SA (2023) Highly sensitive fluorescent probes for selective detection of hypochlorite: Applications in blood serum and cell imaging. Spectrochim Acta A Mol Biomol Spectrosc 294:122537. https://doi.org/10.1016/j.saa.2023.122537

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

DST-EEQ Govt. of Inida, EEQ/2023/000069, DST-Biotechnology Govt. Of Odisha, ST-BT-MISC-0008-2020-245/ST.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study. The Investigation, Validation, Formal analysis, Data curation, Writing-original draft were performed by Patitapaban Mohanty, Pragyan Parimita Dash, Swagatika Mishra. The Conceptualization, Resources, Supervision, and Writing-review & editing were performed by Renjith Bhaskaran and Bigyan Ranjan Jali.

Corresponding author

Correspondence to Bigyan Ranjan Jali.

Ethics declarations

Ethics Approval

Not applicable as the study does not include any use of animals and humans.

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Competing Interests

Authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

10895_2024_3740_MOESM1_ESM.docx

Supplementary file1 (DOCX 4416 KB) 1H NMR, 13C NMR, FTIR, HRMS, UV–Vis spectra of L, L + Hg2+, Fluorescence spectra of L, L + Hg2+, L + Hg2+ + EDTA, Job’s plot, pH colorimetric fluorescent change in UV–Vis lamp, Effects of pH on the fluorescence maxima of L and L + Hg2+ and Fluorescence spectra of L and L + Hg2+ in tap water and pond water medium are freely available. Figures S13 and S14 of supporting material contains information about the UV–Vis spectra of the L-Hg2+ complex both in the gas and the solution phase calculated using TD-DFT approach. Tables S1 and S2 of supporting material contains information about the Cartesian coordinates of the optimized geometries for both the ligand and the ligand-mercury complex in the gas phase and solvent phase

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohanty, P., Dash, P.P., Mishra, S. et al. Thiourea Functionalised Receptor for Selective Detection of Mercury Ions and its Application in Serum Sample. J Fluoresc (2024). https://doi.org/10.1007/s10895-024-03740-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10895-024-03740-7

Keywords

Navigation