Skip to main content
Log in

Anthocyanins of Delonix Regia Floral Petals: A Novel Approach on Fluorescence Enhancement, Forster Resonance Energy Transfer Mechanism and Photostability Studies for Optoelectronic Applications

  • Research
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

In this work, we focused on extracting the anthocyanin dye in acetone, butanol, ethanol, and water solvents from Delonix regia flowers by a simple maceration extraction process. The identification of functional group analysis, vibrational studies, energy transfer mechanisms, optoelectronic properties, photostability studies, FRET-assisted potential light emissions and photometric properties of the anthocyanin dyes are successively investigated. FTIR spectroscopy and vibrational studies have confirmed the existence of polyphenolic groups in 2-phenyl chromenylium (anthocyanin) dyes. The optoelectronic results show the least direct bandgap (2.04 eV), indirect bandgap (1.55 eV), Urbach energy (0.380 eV), high refractive index (1.20), dielectric constant (2.794), and high optical conductivity (1.954 × 103 S/m) for the anthocyanin dye extracted found in water solvent. The photoluminescence properties such as Stoke’s shift, high quantum yield, and lifetime results show that anthocyanin dyes are promising candidates for red-LEDs and optical materials. The absorption and emission spectra of the anthocyanin dyes follow the mirror image rule and the Franck-Condon factor exists between vibrational energy levels corresponding to all the electronic transitions. The excellent correspondence between the absorption and emission spectra reinforces that the anthocyanins are efficient (46%) FRET probes. Further, photometric properties such as CIE, CRI, CCT and colour purity results of anthocyanins in all studied solvents revealed that this material exhibits orange to red shades (x = 0.48 → 0.54 and y = 0.36 →0.45) and is well suitable for have great potential in the manufacturing of Organic-LEDs and other optoelectronic device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Hussaan M, Iqbal N, Adeel S, Azeem M, Tariq Javed M, Raza A (2017) Microwave-assisted enhancement of milkweed (Calotropis procera L.) leaves as an eco-friendly source of natural colorants for textile. Environ Sci Pollut Res 24:5089–5094. https://doi.org/10.1039/D1RA01043C

    Article  CAS  Google Scholar 

  2. Haripadmam PC, Thanuja TH, Varsha GS, Beryl CD, Aji A (2021) Nonlinear optical absorption in PVA films doped by the novel natural dye extract from C. redflash leaves. Opt Mater 112:110804. https://doi.org/10.1016/j.optmat.2021.110804

    Article  CAS  Google Scholar 

  3. Bouchouit K, Derkowska B, Migalska-Zalas A, Abed S, Benali-Cherif N, Sahraoui B (2010) Nonlinear optical properties of selected natural pigments extracted from spinach: carotenoids. Dyes Pigm 86(2):161–165. https://doi.org/10.1016/j.dyepig.2009.12.013

    Article  CAS  Google Scholar 

  4. Sugimoto A, Ochi H, Fujimura S, Yoshida A, Miyadera T, Tsuchida M (2004) Flexible OLED displays using plastic substrates. IEEE J Sel Top Quantum Electron 10(1):107–114. https://doi.org/10.1109/JSTQE.2004.824112

    Article  CAS  Google Scholar 

  5. Fleetham T, Ecton J, Wang Z, Bakken N, Li J (2013) Single-doped white organic light‐emitting device with an external quantum efficiency over 20%. Adv Mater 25(18):2573–2576. https://doi.org/10.1002/adma.201204602

    Article  CAS  PubMed  Google Scholar 

  6. Reineke S, Lindner F, Schwartz G, Seidler N, Walzer K, Lüssem B, Leo K (2009) White organic light-emitting diodes with fluorescent tube efficiency. Nature 459(7244):234–238. https://doi.org/10.1038/nature08003

    Article  CAS  PubMed  Google Scholar 

  7. Jang E, Jun S, Jang H, Lim J, Kim B, Kim Y (2010) White-light‐emitting diodes with quantum dot colour converters for display backlights. Adv Mater 22(28):3076–3080. https://doi.org/10.1002/adma.201000525

    Article  CAS  PubMed  Google Scholar 

  8. Wang J, Lin W, Li W (2013) Three-channel fluorescent sensing via organic white light-emitting dyes for detection of hydrogen sulfide in living cells. Biomaterials 34(30):7429–7436. https://doi.org/10.1016/j.biomaterials.2013.06.013

    Article  CAS  PubMed  Google Scholar 

  9. Grimsdale AC, Leok Chan K, Martin RE, Jokisz PG, Holmes AB (2009) Synthesis of light-emitting conjugated polymers for applications in electroluminescent devices. Chem Rev 109(3):897–1091. https://doi.org/10.1021/cr000013v

    Article  CAS  PubMed  Google Scholar 

  10. Miao Y, Yin M (2022) Recent progress on organic light-emitting diodes with phosphorescent ultra-thin (< 1nm) light-emitting layers. Iscience 25:103804. https://doi.org/10.1016/j.isci2022.103804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yahya M, Bouziani A, Ocak C, Seferoğlu Z, Sillanpää M (2021) Organic/metal-organic photosensitizers for dye-sensitized solar cells (DSSC): recent developments, new trends, and future perceptions. Dyes Pigm 192:109227. https://doi.org/10.1016/j.dyepig.2021.109227

    Article  CAS  Google Scholar 

  12. Goel A, Kumar V, Singh SP, Sharma A, Prakash S, Singh C, Anand RS (2012) Non-aggregating solvatochromic bipolar benzo [f] quinolines and benzo [a] acridines for organic electronics. J Mater Chem 22(30):14880–14888. https://doi.org/10.1039/c2jm31052j

    Article  CAS  Google Scholar 

  13. Justin Thomas KR, Venkateswararao A, Joseph V, Kumar S, Jou JH (2019) Polarity tuning of fluorene derivatives by chromophores to achieve efficient blue electroluminescent materials org. Electron 64:266–273. https://doi.org/10.1016/J.ORGEL.2018.10.029

    Article  CAS  Google Scholar 

  14. Sun W, Zhou N, Xiao Y, Wang S, Li X (2017) A Novel Spiro [acridine-9, 9′‐fluorene] derivatives containing phenanthroimidazole moiety for deep‐blue OLED application. Chem Asian J 12(23):3069–3076. https://doi.org/10.1002/asia.201701292

    Article  CAS  PubMed  Google Scholar 

  15. Jou JH, Kumar S, Jou YC (2013) Disruptive characteristics and lifetime issues of OLEDs. Organic Light-Emitting Diodes (OLEDs). Woodhead Publishing, United States. https://doi.org/10.1533/9780857098948.2.410

    Chapter  Google Scholar 

  16. Singh V, Mishra AK (2016) White light emission from an aqueous vegetable cocktail: application towards pH sensing. Dyes Pigm 125:362–366. https://doi.org/10.1016/j.dyepig.2015.10.017

    Article  CAS  Google Scholar 

  17. Park YI, Postupna O, Zhugayevych A et al (2015) A new pH-sensitive fluorescent and white light emissive material through controlled intermolecular charge transfer. Chem Sci 6(1):789–797. https://doi.org/10.1039/C4SC01911C

    Article  CAS  PubMed  Google Scholar 

  18. Singh V, Mishra AK (2015) White light emission from vegetable extracts. Sci Rep 5(1):11118. https://doi.org/10.1038/srep11118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Maiti DK, Bhattacharjee R, Datta A, Banerjee A (2013) Modulation of fluorescence resonance energy transfer efficiency for white light emission from a series of stilbene-perylene based donor–acceptor pair. J Phys Chem C 117(44):23178–23189. https://doi.org/10.1021/jp409042p

    Article  CAS  Google Scholar 

  20. Singh V, Mishra AK (2016) White light emission from a mixture of pomegranate extract and carbon nanoparticles obtained from the extract. J Mater Chem C 4(15):3131–3137. https://doi.org/10.1039/C6TC00480F

    Article  CAS  Google Scholar 

  21. Benelhadj K, Muzuzu et al (2014) White emitters by tuning the excited-state intramolecular proton‐transfer fluorescence emission in 2‐(2′‐hydroxybenzofuran) benzoxazole dyes. Chem – Eur J 20(40):12843–12857. https://doi.org/10.1002/chem.201402717

    Article  CAS  PubMed  Google Scholar 

  22. Maity A, Ali F, Agarwalla H, Anothumakkool B, Das A (2015) Tuning of multiple luminescence outputs and white-light emission from a single gelator molecule through an ESIPT coupled AIEE process. Chem Commun 51(11):2130–2133. https://doi.org/10.1039/C4CC09211B

    Article  CAS  Google Scholar 

  23. Molla MR, Ghosh S (2012) Hydrogen-bonding‐mediated J‐aggregation and white‐light emission from a remarkably simple, single‐component, naphthalenediimide chromophore. Chem – Eur J 18(5):1290–1294. https://doi.org/10.1002/chem.201103600

    Article  CAS  PubMed  Google Scholar 

  24. Liu Y, Nishiura M, Wang Y, Hou Z (2006) π-Conjugated aromatic enynes as a single-emitting component for white electroluminescence. J Am Chem Soc 128(17):5592–5593. https://doi.org/10.1021/ja058188f

    Article  CAS  PubMed  Google Scholar 

  25. Zhang Y, Xie C, Su H, Liu J (2011) Employing heavy metal-free colloidal quantum dots in solution-processed white light-emitting diodes. Nano Lett 11(2):329–332. https://doi.org/10.1021/nl1021442

    Article  CAS  PubMed  Google Scholar 

  26. Liang R, Yan D et al (2014) Quantum dots-based flexible films and their application as the phosphor in white light-emitting diodes. Chem Mater 26(8):2595–2600. https://doi.org/10.1021/cm404218y

    Article  CAS  Google Scholar 

  27. Chen KJ, Han HV, Chen HC et al (2014) White light-emitting diodes with enhanced CCT uniformity and luminous flux using ZrO2 nanoparticles. Nanoscale 6(10):5378–5383. https://doi.org/10.1039/C3NR06894C

    Article  CAS  PubMed  Google Scholar 

  28. Nicolai HT, Hof A, Blom PW (2012) Device physics of white polymer light-emitting diodes. Adv Funct Mater 22(10):2040–2047. https://doi.org/10.1002/adfm.201102699

    Article  CAS  Google Scholar 

  29. Deng C, Jiang P, Shen X, Ling J, Hogen-Esch TE (2014) White light emission of multi-chromophore photoluminescent nanoparticles using polyacrylate scaffold copolymers with pendent polyfluorene groups. Polym Chem 5(17):5109–5115. https://doi.org/10.1039/C4PY00595C

    Article  CAS  Google Scholar 

  30. Sun CY, Wang XL et al (2013) Efficient and tunable white-light emission of metal–organic frameworks by iridium-complex encapsulation. Nat Commun 4(1):2717. https://doi.org/10.1038/ncomms3717

    Article  CAS  PubMed  Google Scholar 

  31. Tang Q, Liu S, Liu Y, He D et al (2014) Colour tuning and white light emission via in situ doping of luminescent lanthanide metal–organic frameworks. Inorg Chem 53(1):289–293. https://doi.org/10.1021/ic402228g

    Article  CAS  PubMed  Google Scholar 

  32. Yang QY, Wu K, Jiang J et al (2014) Pure white-light and yellow-to-blue emission tuning in single crystals of Dy (III) metal–organic frameworks. Chem Commun 50(57):7702–7704. https://doi.org/10.1039/C4CC01763C

    Article  CAS  Google Scholar 

  33. Sessolo M, Tordera D, Bolink HJ (2013) Ionic iridium complex and conjugated polymer used to solution-process a bilayer white light-emitting diode. ACS Appl Mater Interfaces 5(3):630–634. https://doi.org/10.1021/am302033k

    Article  CAS  PubMed  Google Scholar 

  34. Ramya AR, Varughese S, Reddy ML (2014) Tunable white-light emission from mixed lanthanide (Eu 3+, gd 3+, tb 3+) coordination polymers derived from 4-(dipyridin-2-yl) aminobenzoate. Dalton Trans 43(28):10940–10946. https://doi.org/10.1039/C4DT00871E

    Article  CAS  PubMed  Google Scholar 

  35. Xu Q, Yang W, Wen Y, Liu S, Liu Z, Ong WJ, Li N (2019) Hydrochromic full-colour MXene quantum dots through hydrogen bonding toward ultrahigh-efficiency white light-emitting diodes. Appl Mater Today 16:90–101. https://doi.org/10.1016/j.apmt.2019.05.001

    Article  Google Scholar 

  36. Kumbhakar P, Biswas S et al (2019) Tailoring of structural and photoluminescence emissions by Mn and Cu co-doping in 2D nanostructures of ZnS for the visualization of latent fingerprints and generation of white light. Nanoscale 11(4):2017–2026. https://doi.org/10.1039/C8NR09074B

    Article  CAS  PubMed  Google Scholar 

  37. Poddubny AN, Rodina AV (2016) Nonradiative and radiative Förster energy transfer between quantum dots. J Exp Theor Phys 122:531–538. https://doi.org/10.1134/S1063776116030092

    Article  CAS  Google Scholar 

  38. Yuan LIN, Lin W, Zheng K, Zhu S (2013) FRET-based small-molecule fluorescent probes: rational design and bioimaging applications. Acc Chem Res 46(7):1462–1473. https://doi.org/10.1021/ar300273v

    Article  CAS  PubMed  Google Scholar 

  39. Forster T (1948) Intermolecular energy transfer and fluorescence. Ann Phys, Leipzig Germany

    Google Scholar 

  40. Ledwon P (2019) Recent advances of donor-acceptor type carbazole-based molecules for light emitting applications. Org Electron 75:105422. https://doi.org/10.1016/j.orgel.2019.105422

    Article  CAS  Google Scholar 

  41. Cheung HC (1991) Resonance energy transfer, topics in fluorescence spectroscopy: principles. Springer US, Boston, MA

    Google Scholar 

  42. Watrob HM, Pan CP, Barkley MD (2003) Two-step FRET as a structural tool. J Am Chem Soc 125(24):7336–7343. https://doi.org/10.1021/ja034564p

    Article  CAS  PubMed  Google Scholar 

  43. Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4(6):435–446. https://doi.org/10.1038/nmat1390

    Article  CAS  PubMed  Google Scholar 

  44. Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T (2008) Quantum dots versus organic dyes as fluorescent labels. Nat Methods 5(9):763–775. https://doi.org/10.1038/nmeth.1248

    Article  CAS  PubMed  Google Scholar 

  45. Klostranec JM, Chan WC (2006) Quantum dots in biological and biomedical research: recent progress and present challenges. Adv Mater 18(15):1953–1964. https://doi.org/10.1002/adma.200500786

    Article  CAS  Google Scholar 

  46. Bhattacharyya S, Jana B, Patra A (2015) Multichromophoric organic molecules encapsulated in polymer nanoparticles for artificial light harvesting. ChemPhysChem 16(4):796–804. https://doi.org/10.1002/cphc.201402723

    Article  CAS  PubMed  Google Scholar 

  47. Zhao Q, Chen Y, Li SH, Liu Y (2018) Tunable white-light emission by supramolecular self-sorting in highly swollen hydrogels. Chem Commun 54(2):200–203. https://doi.org/10.1039/C7CC08822A

    Article  CAS  Google Scholar 

  48. Pallavi P, Sk B, Ahir P, Patra A (2018) Tuning the Förster Resonance Energy Transfer through a Self-Assembly Approach for efficient White‐Light Emission in an aqueous medium. Chemistry–A Eur J 24(5):1151–1158. https://doi.org/10.1002/chem.201704437

    Article  CAS  Google Scholar 

  49. Clark RJH, Hester RE (eds) (1996) Advances in Spectroscopy. Wiley, New York. https://doi.org/10.1016/S1631-0748(02)01341-3

    Book  Google Scholar 

  50. Csele MS, Engs P (2004) Fundamentals of Light and Lasers. Wiley, New York

    Book  Google Scholar 

  51. Drake JM, Klafter J, Levitz P (1991) Chemical and biological microstructures as probed by dynamic processes. Science 251(5001):1574–1579. https://doi.org/10.1126/science.2011737

    Article  CAS  PubMed  Google Scholar 

  52. Yılmaz Y, Erzan A, Pekcan Ö (1998) Critical exponents and fractal dimension at the sol-gel phase transition via in situ fluorescence experiments. Phys Rev E 58(6):7487. https://doi.org/10.1103/PhysRevE.58.7487

    Article  Google Scholar 

  53. Huamán AA, Celestino MR, Quintana ME (2021) Theoretical and experimental study of solar cells based on nanostructured films of TiO2 sensitized with natural dyes extracted from Zea mays and Bixa orellana. RSC Adv 11(16):9086–9097. https://doi.org/10.1039/D1RA01043C

    Article  PubMed  PubMed Central  Google Scholar 

  54. Diallo A, Zongo S, Mthunzi P, Rehman S, Alqaradawi SY, Soboyejo W, Maaza M (2014) Z-scan and optical limiting properties of Hibiscus Sabdariffa dye. Appl Phys B 117:861–867. https://doi.org/10.1007/s00340-014-5900-4

    Article  CAS  Google Scholar 

  55. Wang LS, Lee CT, Su WL, Huang SC, Wang SC (2016) Delonix regia leaf extract (DRLE): a potential therapeutic agent for cardioprotection. PLoS ONE 11(12):e0167768. https://doi.org/10.1371/journal.pone.0167768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. El-Sayed AM, Ezzat SM, Salama MM, Sleem AA (2011) Hepatoprotective and cytotoxic activities of Delonix regia flower extracts. Pharmacognosy J 3(19):49–56. https://doi.org/10.5530/pj.2011.19.10

    Article  CAS  Google Scholar 

  57. Modi A, Mishra V et al (2016) Delonix regia: historic perspectives and modern phytochemical and pharmacological researches. Chin J Nat Med 14(1):31–39. https://doi.org/10.3724/SP.J.1009.2016.00031

    Article  CAS  PubMed  Google Scholar 

  58. Khoo HE, Azlan A, Tang ST, Lim SM (2017) Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr Res. https://doi.org/10.1080/16546628.2017.1361779

    Article  PubMed  PubMed Central  Google Scholar 

  59. Ebada D, Hefnawy HT, Gomaa A, Alghamdi AM, Alharbi AA, Almuhayawi MS, Namir M (2023) Characterization of Delonix regia flowers’ pigment and polysaccharides: evaluating their antibacterial, anticancer, and antioxidant activities and their application as a natural colorant and sweetener in beverages. Molecules 28(7):3243. https://doi.org/10.3390/molecules28073243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Khongkaew P, Wattanaarsakit P, Papadopoulos KI, Chaemsawang W (2021) Antioxidant effects and in vitro cytotoxicity on Human Cancer Cell lines of Flavonoid-Rich Flamboyant (Delonix regia (Bojer) Raf.) Flower Extract. Curr Pharm Biotechnol 22(13):1821–1831. https://doi.org/10.2174/1389201021666201029154746

    Article  CAS  PubMed  Google Scholar 

  61. Nayak R, Houshyar S, Khandual A, Padhye R, Fergusson S (2020) Identification of natural textile fibres. In handbook of natural fibres. Woodhead Publishing, pp 503–534. https://doi.org/10.1016/B978-0-12-818398-4.00016-5

    Chapter  Google Scholar 

  62. Kurniawan YS, Fahmi MR, Yuliati L (2020) Isolation and optical properties of natural pigments from purple mangosteen peels. IOP Conf Ser Mater Sci Eng IOP Publishing 833(1):012018. https://doi.org/10.1088/1757-899X/833/1/012018

    Article  CAS  Google Scholar 

  63. Drah A, Tomić NZ, Veličić Z et al (2017) Highly ordered macroporous γ-alumina prepared by a modified sol-gel method with a PMMA microsphere template for enhanced Pb2+, Ni2+ and Cd2+ removal. Ceram Int 43(16):13817–13827. https://doi.org/10.1016/j.ceramint.2017.07.102

    Article  CAS  Google Scholar 

  64. Merlin JC, Statoua A, Cornard JP, Saidi-Idrissi M, Brouillard R (1993) Resonance Raman spectroscopic studies of anthocyanins and anthocyanidins in aqueous solutions. Phytochemistry 35(1):227–232. https://doi.org/10.1016/S0031-9422(00)90539-9

    Article  Google Scholar 

  65. Nickless EM, Holroyd SE, Stephens JM, Gordon KC, Wargent JJ (2014) Analytical FT-Raman spectroscopy to chemotype Leptospermum scoparium and generate predictive models for screening for dihydroxyacetone levels in floral nectar. J Raman Spectrosc 45(10):890–894. https://doi.org/10.1002/jrs.4576

    Article  CAS  Google Scholar 

  66. Harborne JB (1967) Comparative biochemistry on the flavonoids. Academic Press. London and New York.

    Google Scholar 

  67. Zumahi A-A et al (2020) Extraction, optical properties, and aging studies of natural pigments of various flower plants. Heliyon 6(9):e05104. https://doi.org/10.1016/j.heliyon.2020.e05104

    Article  PubMed  PubMed Central  Google Scholar 

  68. Michels L, Richter A, Chellappan RK, Røst HI, Behsen A, Wells KH, Blawid S (2021) Electronic and structural properties of the natural dyes curcumin, bixin and indigo. RSC Adv 11(23):14169–14177. https://doi.org/10.1039/d0ra08474c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Felicissimo MP, Bittencourt C, Houssiau L, Pireaux JJ (2004) Time-of-flight secondary ion mass spectrometry and X-ray photoelectron spectroscopy analyses of Bixa orellana seeds. J Agric Food Chem 52(7):1810–1814. https://doi.org/10.1021/jf035027r

    Article  CAS  PubMed  Google Scholar 

  70. Wang P, Liu J, Zhuang Y, Fei P (2022) Acylating blueberry anthocyanins with fatty acids: improvement of their lipid solubility and antioxidant activities. Food Chemistry: X 15:100420. https://doi.org/10.1016/j.fochx.2022.100420

    Article  CAS  PubMed  Google Scholar 

  71. Godibo DJ, Anshebo ST, Anshebo TY (2015) Dye sensitized solar cells using natural pigments from five plants and quasi-solid state electrolyte. J Braz Chem Soc 26:92–101. https://doi.org/10.5935/0103-5053.20140218

    Article  CAS  Google Scholar 

  72. Vettumperumal R, Kalyanaraman S, Selvan GT, Selvakumar PM (2018) Fluorescence analysis of natural dyes from Plumeria rubra (red and white) flowers. Optik 159:108–114. https://doi.org/10.1016/j.ijleo.2018.01.070

    Article  CAS  Google Scholar 

  73. Picollo M, Aceto M, Vitorino T (2019) UV-Vis spectroscopy. Phys Sci Reviews 4(4):20180008. https://doi.org/10.1515/psr-2018-0008

    Article  Google Scholar 

  74. Renuka CG (2020) Solvatochromism and electronic structure of coumarin derivative. AIP Conf Proc AIP Publishing 2220(1):130022. https://doi.org/10.1063/5.0001777

    Article  CAS  Google Scholar 

  75. Belay A (2010) Measurement of integrated absorption cross-section, oscillator strength and number density of caffeine in coffee beans by integrated absorption coefficient technique. Food Chem 121(2):585–590. https://doi.org/10.1016/j.foodchem.2009.12.052

    Article  CAS  Google Scholar 

  76. Rybczynski P, Kaczmarek-Kȩdziera A (2021) BODIPY dimers: structure, interaction, and absorption spectrum. Struct Chem 32:953–965. https://doi.org/10.1007/s11224-021-01759-1

    Article  CAS  Google Scholar 

  77. Tauc J (ed) (2012) Amorphous and liquid semiconductors. Springer Science & Business Media, Germany

    Google Scholar 

  78. Yu PY, Cardona M (1996) Fundamentals of semiconductors. Springer, 3-540-USA

    Book  Google Scholar 

  79. Fox M (2002) Optical properties of solids. Oxford Univ. Press, England

    Google Scholar 

  80. Sze SM (1981) Physics of semiconductor devices. Wiley, New York

    Google Scholar 

  81. Amri A, Hasan K et al (2019) Surface structural features and optical analysis of nanostructured Cu-oxide thin film coatings coated via the sol-gel dip coating method. Ceram Int 45(10):12888–12894. https://doi.org/10.1016/j.ceramint.2019.03.213

    Article  CAS  Google Scholar 

  82. Kinoshita S, Nishi N, Saitoh A, Kushida T (1987) Urbach tail of organic dyes in solution. J Phys Soc Jpn 56(11):4162–4175. https://doi.org/10.1143/JPSJ.56.4162

    Article  CAS  Google Scholar 

  83. Ebrahimi S, Yarmand B (2020) Solvothermal growth of aligned SnxZn1-xS thin films for tunable and highly response self-powered UV detectors. J Alloys Compd 827:154246. https://doi.org/10.1016/j.jallcom.2020.154246

    Article  CAS  Google Scholar 

  84. Duan L, Yi H, Zhang Y et al (2019) Comparative study of light-and thermal-induced degradation for both fullerene and non-fullerene-based organic solar cells. Sustain Energy Fuels 3(3):723–735. https://doi.org/10.1039/C8SE00567B

    Article  CAS  Google Scholar 

  85. Amin PO, Muhammadsharif FF, Saeed SR, Sulaiman K (2021) A study on optoelectronic parameters of natural dyes extracted from beetroot, cabbage, walnut, and henna for potential applications in organic electronics. J Fluoresc 32:203–213. https://doi.org/10.1007/s10895-021-02837-7

    Article  CAS  PubMed  Google Scholar 

  86. Shaaban ER, Kansal I, Mohamed SH, Ferreira JM (2009) Microstructural parameters and optical constants of ZnTe thin films with various thicknesses. Physica B 404(20):3571–3576. https://doi.org/10.1016/j.physb.2009.06.002

    Article  CAS  Google Scholar 

  87. Pawlicki M, Collins HA, Denning RG, Anderson HL (2009) Two-photon absorption and the design of two‐photon dyes. Angew Chem Int Ed 48(18):3244–3266. https://doi.org/10.1002/anie.200805257

    Article  CAS  Google Scholar 

  88. Duarte DA, Massi M, da Silva Sobrinho AS (2014) Development of dye-sensitized solar cells with sputtered N-doped thin films: from modeling the growth mechanism of the films to fabrication of the solar cells. Int J Photoenergy. https://doi.org/10.1155/2014/839757

    Article  Google Scholar 

  89. Amin PO, Kadhim AJ, Ameen MA, Abdulwahid RT (2018) Structural and optical properties of thermally annealed Ti2 – SiO2 binary thin films synthesized by sol–gel method. J Mater Sci: Mater Electron 29:16010–16020. https://doi.org/10.1007/s10854-018-9688-6

    Article  CAS  Google Scholar 

  90. Sharma A, Aggarwal S (2018) Optical investigation of soda lime glass with buried silver nanoparticles synthesised by ion implantation. J Non-cryst Solids 485:57–65. https://doi.org/10.1016/j.jnoncrysol.2018.01.038

    Article  CAS  Google Scholar 

  91. Sakr GB, Yahia IS, Fadel M, Fouad SS, Romčević N (2010) Optical spectroscopy, optical conductivity, dielectric properties and new methods for determining the gap states of CuSe thin films. J Alloys Compd 507(2):557–562. https://doi.org/10.1016/j.jallcom.2010.08.022

    Article  CAS  Google Scholar 

  92. Yahia IS, Zahran HY, Alamri FH (2016) Pyronin Y as new organic semiconductors: structure, optical spectroscopy and electrical/dielectric properties. Synth Met 218:19–26. https://doi.org/10.1016/j.synthmet.2016.04.024

    Article  CAS  Google Scholar 

  93. Pereira TM, Vitório F, Amaral RC, Zanoni KPS, Iha NYM, Kümmerle AE (2016) Microwave-assisted synthesis and photophysical studies of novel fluorescent N-acyl hydrazone and semicarbazone-7-OH-coumarin dyes. New J Chem 40(10):8846–8854. https://doi.org/10.1039/C6NJ01532H

    Article  CAS  Google Scholar 

  94. Bindhu CV, Harilal SS, Nampoori VPN, Vallabhan CPG (1999) Solvent effect on absolute fluorescence quantum yield of rhodamine 6G determined using transient thermal lens technique. Mod Phys Lett B 13(16):563–576. https://doi.org/10.1142/S0217984999000725

    Article  CAS  Google Scholar 

  95. Choi J, Kim SH, Lee W, Yoon C, Kim JP (2012) Synthesis and characterization of thermally stable dyes with improved optical properties for dye-based LCD colour filters. New J Chem 36(3):812–818. https://doi.org/10.1039/C2NJ20938A

    Article  CAS  Google Scholar 

  96. De Lima SR, Felisbino DG, Lima MR, Chang R, Martins MM, Goulart LR, Pilla V (2019) Fluorescence quantum yield of natural dye extracted from Tradescantia pallida purpurea as a function of the seasons: preliminary bioapplication as a fungicide probe for necrotrophic fungi. J Photochem Photobiol B 200:111631. https://doi.org/10.1016/j.jphotobiol.2019.111631

    Article  CAS  PubMed  Google Scholar 

  97. Lakowicz JR (2006) Principles of fluorescence spectroscopy. Springer, USA

    Book  Google Scholar 

  98. Birks JB (1970) Photophysics of aromatic molecules. Wiley-Interscience, New York

    Google Scholar 

  99. Deng Y, Li S et al (2020) Synthesis and a photo-stability study of organic dyes for electro-fluidic display. Micromachines 11(1):81. https://doi.org/10.3390/mi11010081

    Article  PubMed  PubMed Central  Google Scholar 

  100. Luo Q, Zhang H, Zhao Y, Wang J, Yu T (2018) Synthesis and characterization of 9, 10-[di-p-(7-diethylamino-coumarin-3-yl) thiopheneyl] anthracene as fluorescent material. J Sulfur Chem 39(1):89–98. https://doi.org/10.1080/17415993.2017.1391813

    Article  CAS  Google Scholar 

  101. Knox RS (1996) Electronic excitation transfer in the photosynthetic unit: reflections on work of William Arnold. Photosynth Res 48:35–39. https://doi.org/10.1007/BF00040993

    Article  CAS  PubMed  Google Scholar 

  102. Clegg RM (1995) Fluorescence resonance energy transfer. Curr Opin Biotechnol 6(1):103–110. https://doi.org/10.1016/0958-1669(95)80016-6

    Article  CAS  PubMed  Google Scholar 

  103. Renuka CG (2020) Fluorescence lifetime decay study of 2, 3, 6, 7-tetrahydro-1H, 5H, 11H- [1] benzopyrano [6, 7, 8-ij]-quinoliz-11-one molecule: As a function of solvent viscosity and temperature. AIP Conf Proc AIP Publishing 2220(1):140017. https://doi.org/10.1063/5.0001787

    Article  CAS  Google Scholar 

  104. Raikar US, Renuka CG, Nadaf YF, Mulimani BG, Karguppikar AM, Soudagar MK (2006) Solvent effects on the absorption and fluorescence spectra of coumarins 6 and 7 molecules: determination of ground and excited state dipole moment. Spectrochim Acta Part A Mol Biomol Spectrosc 65(3–4):673–677. https://doi.org/10.1016/j.saa.2005.12.028

    Article  CAS  Google Scholar 

  105. Satpati AK, Kumbhakar M, Nath S, Pal H (2009) Photophysical properties of Coumarin-7 dye: role of twisted intramolecular charge transfer state in high polarity Protic solvents. Photochem Photobiol 85(1):119–129. https://doi.org/10.1111/j.1751-1097.2008.00405.x

    Article  CAS  PubMed  Google Scholar 

  106. Haugland RP, Yguerabide J, Stryer L (1969) Dependence of the kinetics of singlet-singlet energy transfer on spectral overlap. Proc Natl Acad Sci 63(1):23–30. https://doi.org/10.1073/pnas.63.1.23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Rolinski OJ, Birch DJ (2000) Determination of acceptor distribution from fluorescence resonance energy transfer: theory and simulation. J Chem Phys 112(20):8923–8933. https://doi.org/10.1063/1.481506

    Article  CAS  Google Scholar 

  108. Stryer L (1978) Fluorescence energy transfer as a spectroscopic ruler. Annu Rev Biochem 47(1):819–846. https://doi.org/10.1146/annurev.bi.47.070178.004131

    Article  CAS  PubMed  Google Scholar 

  109. Hegde PK, Adhikari AV, Manjunatha MG, Sandeep CS, Philip R (2009) Synthesis and nonlinear optical characterization of new poly {2, 2′-(3, 4-didodecyloxythiophene-2, 5-diyl) bis [5-(2-thienyl)-1, 3, 4-oxadiazole]}. Synth Met 159(11):1099–1105. https://doi.org/10.1016/j.synthmet.2009.01.034

    Article  CAS  Google Scholar 

  110. Yekta A, Duhamel J, Winnik MA (1995) Dipole-dipole electronic energy transfer. Fluorescence decay functions for arbitrary distributions of donors and acceptors: systems with planar geometry. Chem Phys Lett 235(1–2):119–125. https://doi.org/10.1016/0009-2614(95)00045-6

    Article  CAS  Google Scholar 

  111. Babu KV, Renuka CG, Nagabhushana H (2018) Mixed fuel approach for the fabrication of TiO2: Ce3+ (1–9 mol%) nanophosphors: applications towards wLED and latent finger print detection. Ceram Int 44(7):7618–7628. https://doi.org/10.1016/j.ceramint.2018.01.184

    Article  CAS  Google Scholar 

  112. Kumar S, Puttaraju B, Patil S (2016) A deep-blue Electroluminescent device based on a Coumarin Derivative. ChemPlusChem 81(4):384–390. https://doi.org/10.1002/cplu.201500572

    Article  CAS  PubMed  Google Scholar 

  113. McCamy CS (1992) Correlated colour temperature as an explicit function of chromaticity coordinates. Colour Res Application 17(2):142–144. https://doi.org/10.1002/col.5080170211

    Article  Google Scholar 

  114. Ghosh A, Selvaraj P, Sundaram S, Mallick TK (2018) The colour rendering index and correlated colour temperature of dye-sensitized solar cell for adaptive glazing application. Sol Energy 163:537–544. https://doi.org/10.1016/j.solener.2018.02.021

    Article  CAS  Google Scholar 

  115. Wang Z, Yang Z et al (2018) Red phosphor Rb2NbOF5: Mn4+ for warm white light-emitting diodes with a high colour-rendering index. Inorg Chem 58(1):456–461. https://doi.org/10.1021/acs.inorgchem.8b02676

    Article  CAS  PubMed  Google Scholar 

  116. Huang Y, Cohen TA, Luscombe CK (2022) Naturally derived Organic dyes for LED lightings of high Color Rendering and Fidelity Index. Adv Sustainable Syst 6(2):2000300. https://doi.org/10.1002/adsu.202000300

    Article  CAS  Google Scholar 

  117. Li C, Cui G et al (2016) Accurate method for computing correlated colour temperature. Opt Express 24(13):14066–14078. https://doi.org/10.1364/OE.24.014066

    Article  PubMed  Google Scholar 

  118. Pramod AG, Nadaf YF, Renuka CG (2019) A combined experimental theoretical approach for energy gap determination, photophysical, photostable, optoelectronic, NLO, and organic light emitting diode (OLED) application: synthesized coumarin derivative. J Mol Struct 1194:271–283. https://doi.org/10.1016/j.molstruc.2019.05.099

    Article  CAS  Google Scholar 

  119. Peng S, Zhao Y et al (2018) Acquiring high-performance deep‐blue OLED emitters through an unexpected blueshift colour‐tuning effect induced by electron‐donating‐OMe substituents. Chemistry–A Eur J 24(32):8056–8060. https://doi.org/10.1002/chem.201800974

    Article  CAS  Google Scholar 

  120. Shi J, Xu L et al (2019) Efficient and colour-purity blue electroluminescence by manipulating the coupling forms of D–A hybrids with phenothiazine as the strong donor. Dyes Pigm 160:962–970. https://doi.org/10.1016/j.dyepig.2018.08.055

    Article  CAS  Google Scholar 

  121. Sanju KS, Neelakandan PP, Ramaiah D (2011) DNA-assisted white light emission through FRET. Chem Commun 47(4):1288–1290. https://doi.org/10.1039/C0CC04173D

    Article  CAS  Google Scholar 

  122. Ledemi Y, Trudel A et al (2014) White light and multicolour emission tuning in triply doped Yb 3+/Tm 3+/Er 3+ novel fluoro-phosphate transparent glass-ceramics. J Mater Chem C 2(25):5046–5056. https://doi.org/10.1039/C4TC00455H

    Article  CAS  Google Scholar 

  123. Xia Z, Liu Q (2016) Progress in discovery and structural design of colour conversion phosphors for LEDs. Prog Mater Sci 84:59–117. https://doi.org/10.1016/j.pmatsci.2016.09.007

    Article  CAS  Google Scholar 

  124. McCluney WR (2014)  Introduction to radiometry and photometry. Artech House

    Google Scholar 

  125. Franc C, Grum (1979) Optical Radiation measurements (v. 1). Academic, New York, New York

    Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Harshitha. D: Writing – review & editing, Writing Original draft, visualization, validation. Anil Kumar: Calculations - Förster Resonance Energy transfer parameters. Mahesh H. M: Analysis- UV-Visible spectroscopy.C.G. Renuka: Writing – review & editing, Supervision, Data curation, visualization, validation.

Corresponding author

Correspondence to C. G. Renuka.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harshitha, D., Kumar, A., Mahesh, H.M. et al. Anthocyanins of Delonix Regia Floral Petals: A Novel Approach on Fluorescence Enhancement, Forster Resonance Energy Transfer Mechanism and Photostability Studies for Optoelectronic Applications. J Fluoresc (2024). https://doi.org/10.1007/s10895-024-03730-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10895-024-03730-9

Keywords

Navigation