Skip to main content
Log in

A Dual-Mode Detection Sensor Based on Nitrogen-Doped Carbon Dots for Visual Detection of Fe(III) and Ascorbic Acid via a Smartphone

  • Research
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Accurately and promptly detecting Fe3+ and ascorbic acid (AA) is a crucial objective. In this study, nitrogen-doped carbon dots (N-CDs) were synthesized using a one-step hydrothermal synthesis method with 6,9-diamino-2-ethoxyacridine lactate as the precursor. The introduction of Fe3+ and AA resulted in both fluorescence (FL) quenching and enhancement of the synthesized N-CDs. The fluorescent response of the N-CDs probe to Fe3+ was observed in the concentration range of 5–20 µM and 25–50 µM, with a limit of detection (LOD) of 290 nM. Remarkably, the fluorescence of the N-CDs was recovered upon the addition of AA to the N-CDs-Fe3+ system. Using the “off-on” fluorescent N-CDs probe, a linear range of 40–90 µM was achieved with an LOD of 0.69 µM. Additionally, the feasibility of employing a smartphone equipped with an RGB Color Picker was demonstrated for the analysis of Fe3+ and AA concentrations, providing a novel visual detection method. Furthermore, the application of N-CDs in solution demonstrated considerable potential for visually detecting Fe3+ and AA. The proposed dual-mode detection sensor was found to be simple, efficient, and stable, enabling the successful determination of Fe3+ and AA in practical samples with satisfactory results.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Piasek A, Pulit-Prociak J, Zielina M, Banach M (2023) Fluorescence of D-glucose-derived carbon dots: effect of process parameters. J Fluoresc 1–13. https://doi.org/10.1007/s10895-023-03392-z

  2. Cai L, Fu Z, Cui F (2020) Synthesis of carbon dots and their application as turn off–on fluorescent sensor for Mercury (II) and glutathione. J Fluoresc 30(1):11–20. https://doi.org/10.1007/s10895-019-02454-5

    Article  CAS  PubMed  Google Scholar 

  3. Li W, Zhang X, Miao C, Li R, Ji Y (2020) Fluorescent paper–based sensor based on carbon dots for detection of folic acid. Anal Bioanal Chem 412(12):2805–2813. https://doi.org/10.1007/s00216-020-02507-w

    Article  CAS  PubMed  Google Scholar 

  4. Zheng W et al (2018) A molecularly-imprinted-electrochemical-sensor modified with nano-carbon-dots with high sensitivity and selectivity for rapid determination of glucose. Anal Biochem 555:42–49. https://doi.org/10.1016/j.ab.2018.06.004

  5. Taghavi F, Moeinpour F, Khojastehnezhad A, Abnous K, Taghdisi SM (2021) Recent applications of quantum dots in optical and electrochemical aptasensing detection of lysozyme. Anal Biochem 630:114334. https://doi.org/10.1016/j.ab.2021.114334

    Article  CAS  Google Scholar 

  6. Chen J et al (2017) Red-emissive carbon dots for fingerprints detection by spray method: coffee ring effect and unquenched fluorescence in drying process. ACS Appl Mater Interfaces 9(22):18429–18433. https://doi.org/10.1021/acsami.7b03917

    Article  CAS  PubMed  Google Scholar 

  7. Molaei MJ (2020) Principles, mechanisms, and application of carbon quantum dots in sensors: a review. Anal Methods 12(10):1266–1287. https://doi.org/10.1039/c9ay02696g

    Article  CAS  Google Scholar 

  8. Singaravelu CM, Deschanels X, Rey C, Causse J (2021) Solid-state fluorescent carbon dots for fluorimetric sensing of Hg2+. ACS Appl Nano Mater 4(6):6386–6397. https://doi.org/10.1021/acsanm.1c01400

    Article  CAS  Google Scholar 

  9. Mohammadpour Z, Safavi A, Shamsipur M (2014) A new label free colorimetric chemosensor for detection of mercury ion with tunable dynamic range using carbon nanodots as enzyme mimics. Chem Eng J 255:1–7. https://doi.org/10.1016/j.cej.2014.06.012

    Article  CAS  Google Scholar 

  10. Sohal N, Maity B, Basu S (2020) Carbon Dot-MnO2 nanosphere composite sensors for selective detection of glutathione. ACS Appl Nano Mater 3(6):5955–5964. https://doi.org/10.1021/acsanm.0c01088

    Article  CAS  Google Scholar 

  11. Lu S et al (2019) Synthesis of dual functional gallic-acid-based carbon dots for bioimaging and antitumor therapy. Biomater Sci 7:3258–3265. https://doi.org/10.1039/c9bm00570f

    Article  CAS  PubMed  Google Scholar 

  12. Li H et al (2020) Recent advances in carbon dots for bioimaging applications. Nanoscale Horizons 5(2):218–234. https://doi.org/10.1039/c9nh00476a

    Article  CAS  Google Scholar 

  13. Feng T, Ai X, An G, Yang P, Zhao Y (2016) Charge-convertible carbon dots for imaging-guided drug delivery with enhanced in vivo cancer therapeutic efficiency. ACS Nano 10(4):4410–4420. https://doi.org/10.1021/acsnano.6b00043

    Article  CAS  PubMed  Google Scholar 

  14. Wang Q et al (2013) Hollow luminescent carbon dots for drug delivery. Carbon 59:192–199. https://doi.org/10.1016/j.carbon.2013.03.009

    Article  CAS  Google Scholar 

  15. Long C, Jiang Z, Shangguan J, Qing T, Zhang P, Feng B (2020) Applications of carbon dots in environmental pollution control: a review. Chem Eng J 406:126848. https://doi.org/10.1016/j.cej.2020.126848

  16. Bai H, Tu Z, Liu Y, Tai Q, Guo Z, Liu S, November (2020) Dual-emission carbon dots-stabilized copper nanoclusters for ratiometric and visual detection of Cr2O72- ions and Cd2+ ions. J Hazard Mater 386:121654. https://doi.org/10.1016/j.jhazmat.2019.121654

  17. Ma C, Yin C, Fan Y, Yang X, Zhou X (2019) Highly efficient synthesis of N-doped carbon dots with excellent stability through pyrolysis method. J Mater Sci 54(13):9372–9384. https://doi.org/10.1007/s10853-019-03585-7

    Article  CAS  Google Scholar 

  18. Ding S, Gao Y, Ni B, Yang X (2021) Green synthesis of biomass-derived carbon quantum dots as fluorescent probe for Fe3+ detection. Inorg Chem Commun 130:108636. https://doi.org/10.1016/j.inoche.2021.108636

    Article  CAS  Google Scholar 

  19. Cui L, Ren X, Sun M, Liu H, Xia L (2021) Carbon dots: synthesis, properties and applications. Nanomaterials 11(12):3419. https://doi.org/10.3390/nano11123419

  20. Shi B, Su Y, Zhang L, Huang M, Liu R, Zhao S (2016) Nitrogen and phosphorus Co-doped carbon nanodots as a novel fluorescent probe for highly sensitive detection of Fe3+ in human serum and living cells. ACS Appl Mater Interfaces 8:10717–10725. https://doi.org/10.1021/acsami.6b01325

  21. Li S, Li Y, Cao J, Zhu J, Fan L, Li X (2014) Sulfur-doped graphene quantum dots as a novel fluorescent probe for highly selective and sensitive detection of Fe3+. Anal Chem 86(20):10201−10207. https://doi.org/10.1021/acs.analchem.0c01997

  22. Qi H et al (2018) Biomass-derived nitrogen-doped carbon quantum qots: highly selective fluorescent probe for detecting Fe3+ ions and tetracyclines. J Colloid Interface Sci 539:332–341. https://doi.org/10.1016/j.jcis.2018.12.047

    Article  CAS  Google Scholar 

  23. Cui J et al (2022) N-doped carbon dots as fluorescent “turn-off” nanosensors for ascorbic acid and Fe3+ detection. ACS Appl Nano Mater 5:7268–7277. https://doi.org/10.1021/acsanm.2c01170

  24. Yaoping Hu, Zhijin Gao, Jie Yang, Hui Chen, Lei Han (2018) Environmentally benign conversion of waste polyethylene terephthalate to fluorescent carbon dots for “on-off-on” sensing of ferric and pyrophosphate ions. J Colloid Interface Sci 538:481–488. https://doi.org/10.1016/j.jcis.2018.12.016

  25. Huang Z, Gao Y, Huang Z, Chen D, Sun J, Zhou L (2021) Sulfur quantum dots: a novel fluorescent probe for sensitive and selective detection of Fe3+ and phytic acid. Microchem J 170:106656. https://doi.org/10.1016/j.microc.2021.106656

    Article  CAS  Google Scholar 

  26. Chen Z, Lu D, Zhang G, Yang J, Dong C, Shuang S (2014) Glutathione capped silver nanoclusters-based fluorescent probe for highly sensitive detection of Fe3+. Sens Actuators B: Chem 202:631–637. https://doi.org/10.1016/j.snb.2014.05.123

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kayani KF, Omer KM (2022) A red luminescent europium metal organic framework (Eu-MOF) integrated with a paper strip using smartphone visual detection for determination of folic acid in pharmaceutical. New J Chem 46:8152–8161. https://doi.org/10.1039/d2nj00601d

  28. Lv X, Man H, Dong L, Huang J, Wang X (2020) Preparation of highly crystalline nitrogen-doped carbon dots and their application in sequential fluorescent detection of Fe3+ and ascorbic acid. Food Chem 326:126935. https://doi.org/10.1016/j.foodchem.2020.126935

    Article  CAS  PubMed  Google Scholar 

  29. Fan R et al (2022) Reuse of waste Myrica rubra for green synthesis of nitrogen-doped carbon dots as an “on-off-on” fluorescent probe for Fe3+ and ascorbic acid detection. Ecotoxicol Environ Saf 233:113350. https://doi.org/10.1016/j.ecoenv.2022.113350

  30. Kong Y, He Y, Zhou J, Zhong S, Song G (2020) Amino acids as the nitrogen source to synthesize boron nitride quantum dots for fluorescence turn-off-on detection of ascorbic acid. ChemistrySelect 5(13):3828–3834. https://doi.org/10.1002/slct.202000602

  31. Zhang J, Shi G (2022) Rational design of MoS2 QDs and Eu3+ as a ratiometric fluorescent probe for point-of-care visual quantitative detection of tetracycline via smartphone-based portable platform. Anal Chim Acta 1198:339572. https://doi.org/10.1016/j.aca.2022.339572

    Article  CAS  PubMed  Google Scholar 

  32. Kayani KF, Mohammad NN, Kader DA, Mohammed SJ (2023) Ratiometric Lanthanide Metal-Organic frameworks (MOFs) for smartphone-assisted visual detection of food contaminants and water: a review. ChemistrySelect 8(47):e202303472. https://doi.org/10.1002/slct.202303472

  33. Liu T, Fu L, Yin C, Wu M, Chen L, Niu N (2022) Design of smartphone platform by ratiometric fluorescent for visual detection of silver ions. Microchem J 174:107016. https://doi.org/10.1016/j.microc.2021.107016

  34. Nonno SD, Ulber R (2021) Smartphone-based optical analysis systems. Analyst 146(9):2749–2768. https://doi.org/10.1039/d1an00025j

    Article  CAS  PubMed  Google Scholar 

  35. Bhatt M, Bhatt S, Vyas G, Raval IH, Haldar S, Paul P (2020) Water-dispersible fluorescent carbon dots as bioimaging agents and probes for Hg2+ and Cu2+ ions. ACS Appl Nano Mater 3(7):7096–7104. https://doi.org/10.1021/acsanm.0c01426

    Article  CAS  Google Scholar 

  36. Bhamore JR, Jha S, Park TJ, Kailasa SK (2018) Fluorescence sensing of Cu2+ ion and imaging of fungal cell by ultra-small fluorescent carbon dots derived from Acacia concinna seeds. Sens Actuators B Chem 277:47–54. https://doi.org/10.1016/j.snb.2018.08.149

    Article  CAS  Google Scholar 

  37. Murugan N, Prakash M, Jayakumar M, Sundaramurthy A, Sundramoorthy AK (2018) Green synthesis of fluorescent carbon quantum dots from Eleusine coracana and their application as a fluorescence ‘turn-off’ sensor probe for selective detection of Cu2+. Appl Surf Sci 476:468–480. https://doi.org/10.1016/j.apsusc.2019.01.090

  38. Polatoğlu B, Bozkurt E (2021) Green synthesis of fluorescent carbon dots from Kumquat (Fortunella margarita) for detection of Fe3+ ions in aqueous solution. Res Chem Intermed 47(5):1865–1881. https://doi.org/10.1007/s11164-021-04404-y

    Article  CAS  Google Scholar 

  39. Song P et al (2017) A multianalyte fluorescent carbon dots sensing system constructed based on specific recognition of Fe(III) ions. RSC Adv 7(46):28637–28646. https://doi.org/10.1039/c7ra04122e

    Article  CAS  Google Scholar 

  40. Qiu Y et al (2020) Facile, green and energy-efficient preparation of fluorescent carbon dots from processed traditional Chinese medicine and their applications for on-site semi-quantitative visual detection of cr(VI). Sens Actuators B Chem 324:128722. https://doi.org/10.1016/j.snb.2020.128722

    Article  CAS  Google Scholar 

  41. Yang Y et al (2019) Green emitting carbon dots for sensitive fluorometric determination of cartap based on its aggregation effect on gold nanoparticles. Microchim Acta 186:259. https://doi.org/10.1007/s00604-019-3361-5

    Article  CAS  Google Scholar 

  42. Zan M et al (2020) One-step synthesis of green emission carbon dots for selective and sensitive detection of nitrite ions and cellular imaging application. RSC Adv 10:10067–10075. https://doi.org/10.1039/c9ra11009g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Liu W et al (2019) Preparation of nitrogen-doped carbon dots with a high fluorescence quantum yield for the highly sensitive detection of Cu2+ ions, drawing anti-counterfeit patterns and imaging live cells. New Carbon Mater 34(4):390–402. https://doi.org/10.1016/s1872-5805(19)30024-1

    Article  CAS  Google Scholar 

  44. Miao H, Wang Y, Yang X (2018) Carbon dots derived from tobacco for visually distinguishing and detecting three kinds of tetracyclines. Nanoscale 10:8139–8145. https://doi.org/10.1039/c8nr02405g

    Article  CAS  PubMed  Google Scholar 

  45. Cheng Z et al (2019) Highly selective fluorescent visual detection of perfluorooctane sulfonate via blue fluorescent carbon dots and berberine chloride hydrate. Acta - Part A Mol Biomol Spectrosc 207:262–269. https://doi.org/10.1016/j.saa.2018.09.028

    Article  CAS  Google Scholar 

  46. Gao X, Zhou X, Ma Y, Qian T, Wang C, Chu F (2019) Facile and cost-effective preparation of carbon quantum dots for Fe3+ ion and ascorbic acid detection in living cells based on the ‘on-off-on’ fluorescence principle. Appl Surf Sci 469:911–916. https://doi.org/10.1016/j.apsusc.2018.11.095

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I extend special thanks to the University of Sulaimani and Charmo University for all of their cooperation. K.F.K.

Funding

The authors received no financial support for the research, authorship, and/or publication of this article.

Author information

Authors and Affiliations

Authors

Contributions

K.F.K.: conceptualization, software, formal analysis, validation, investigation, and writing (original draft). C.N.A: conceptualization, formal analysis, investigation, sample collections.

Corresponding author

Correspondence to Kawan F. Kayani.

Ethics declarations

Ethical Approval

This article does not contain any studies with human or animal subjects.

Consent to Participate

All authors provided their consent for the inclusion of their work in the manuscript.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kayani, K.F., Abdullah, C.N. A Dual-Mode Detection Sensor Based on Nitrogen-Doped Carbon Dots for Visual Detection of Fe(III) and Ascorbic Acid via a Smartphone. J Fluoresc (2024). https://doi.org/10.1007/s10895-024-03604-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10895-024-03604-0

Keywords

Navigation