Skip to main content
Log in

Ratiometric determination of Cr(VI) based on a dual-emission fluorescent nanoprobe using carbon quantum dots and a smartphone app

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A simple dual-colour fluorescent nanoprobe has been designed composed of blue and yellow emission carbon quantum dots (CQDs). This system is inexpensive and easy to operate and was successfully employed for on-site measurements based on a smartphone app. The designed nanoprobe exhibited increased selectivity for Cr(VI), leading to a double stable response of the two CQDs. The dual-emission nanoprobe showed blue-violet fluorescence upon UV irradiation, and the fluorescent emission peaks were located at 418 nm and 552 nm. The blue light emission of CQDs was quenched with increasing Cr(VI) concentration due to the inner filter effect, whereas the yellow light emission was enhanced due to the aggregation-induced emission effect. The different responses of the dual emissions to Cr(VI) resulted in a fluorescent colour variation, thus enabling facile macroscopic visualization. With a smartphone, the change in the fluorescence colour could be observed more apparently than that of a single fluorescence nanoprobe, and the response increased linearly so that the nanoprobe could be applied to instantaneous measurements. Furthermore, the dual-emission nanoprobe was successfully employed for analysing food and water samples. Accurate concentrations were obtained by constructing a calibration plot using a fluorescence spectrometer and a smartphone app; the recoveries were 81.6% to 107.7%, and the relative standard deviation was below 3.6%. Therefore, this smartphone-integrated dual-emission detection system is promising as a new portable method for the on-site measurement of Cr(VI) ions.

Graphical abstract

* Y-CQDs: yellow emission carbon quantum dots.

B-CQDs: blue emission carbon quantum dots.

B/Y-CQDs: a mixture of B-CQDs and Y-CQDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tan X, Wang X, Hao A, Liu Y, Wang X, Chu T, Jiang L, Yang Y, Ming D (2020) Aptamer-based ratiometric fluorescent nanoprobe for specific and visual detection of zearalenone. Microchem J 157:104943. https://doi.org/10.1016/j.microc.2020.104943

    Article  CAS  Google Scholar 

  2. Wang B, Liang Z, Tan H, Duan W, Luo M (2020) Red-emission carbon dots-quercetin systems as ratiometric fluorescent nanoprobes towards Zn2+ and adenosine triphosphate. Microchim Acta 187(6):345. https://doi.org/10.1007/s00604-020-04316-5

    Article  CAS  Google Scholar 

  3. Tan H, Wu X, Weng Y, Lu Y, Huang Z-Z (2020) Self-assembled FRET Nanoprobe with metal-organic framework as a scaffold for Ratiometric detection of Hypochlorous acid. Anal Chem 92(4):3447–3454. https://doi.org/10.1021/acs.analchem.9b05565

    Article  CAS  PubMed  Google Scholar 

  4. Wang Y-Q, Zhao T, He X-W, Li W-Y, Zhang Y-K (2014) A novel core-satellite CdTe/silica/au NCs hybrid sphere as dual-emission ratiometric fluorescent probe for Cu2+. Biosens Bioelectron 51:40–46. https://doi.org/10.1016/j.bios.2013.07.028

    Article  CAS  PubMed  Google Scholar 

  5. Doussineau T, Schulz A, Lapresta-Fernandez A, Moro A, Körsten S, Trupp S, Mohr GJ (2010) On the Design of Fluorescent Ratiometric Nanosensors. Chem Eur J 16(34):10290–10299. https://doi.org/10.1002/chem.201000829

    Article  CAS  PubMed  Google Scholar 

  6. Li P, Xie T, Fan N, Li K, Tang B (2011) Ratiometric fluorescence imaging for distinguishing chloride concentration between normal and ischemic ventricular myocytes. Chemical communications (Cambridge, England) 48:2077-2079. https://doi.org/10.1039/c1cc15258k

  7. Yu L, Zhang L, Ren G, Li S, Zhu B, Chai F, Qu F, Wang C, Su Z (2018) Multicolorful fluorescent-nanoprobe composed of au nanocluster and carbon dots for colorimetric and fluorescent sensing Hg2+ and Cr6+. Sensors Actuators B Chem 262:678–686. https://doi.org/10.1016/j.snb.2018.01.192

    Article  CAS  Google Scholar 

  8. Liu W, Wang X, Wang Y, Li J, Shen D, Kang Q, Chen L (2018) Ratiometric fluorescence sensor based on dithiothreitol modified carbon dots-gold nanoclusters for the sensitive detection of mercury ions in water samples. Sensors Actuators B Chem 262:810–817. https://doi.org/10.1016/j.snb.2018.01.222

    Article  CAS  Google Scholar 

  9. Barakat MA (2011) New trends in removing heavy metals from industrial wastewater. Arab J Chem 4(4):361–377. https://doi.org/10.1016/j.arabjc.2010.07.019

    Article  CAS  Google Scholar 

  10. Das A, Mishra S (2009) Hexavalent chromium (VI): environment pollutant and health hazard. J Environ Res Dev 2:386–392

    Google Scholar 

  11. Das R, Bandyopadhyay R, Pramanik P (2018) Carbon quantum dots from natural resource: a review. Materials Today Chemistry 8:96–109. https://doi.org/10.1016/j.mtchem.2018.03.003

    Article  CAS  Google Scholar 

  12. Sharma P, Rajput P, Thakur A, Kim K-H, Kumar P (2019) Recent advances in carbon quantum dot-based sensing of heavy metals in water. TrAC Trends Anal Chem 114:171–195. https://doi.org/10.1016/j.trac.2019.03.003

    Article  CAS  Google Scholar 

  13. Xu S, Zhang F, Xu L, Liu X, Ma P, Sun Y, Wang X, Song D (2018) A fluorescence resonance energy transfer biosensor based on carbon dots and gold nanoparticles for the detection of trypsin. Sensors Actuators B Chem 273:1015–1021. https://doi.org/10.1016/j.snb.2018.07.023

    Article  CAS  Google Scholar 

  14. Zhang S, Lin B, Yu Y, Cao Y, Guo M, Shui L (2018) A ratiometric nanoprobe based on silver nanoclusters and carbon dots for the fluorescent detection of biothiols. Spectrochim Acta A Mol Biomol Spectrosc 195:230–235. https://doi.org/10.1016/j.saa.2018.01.078

    Article  CAS  PubMed  Google Scholar 

  15. Wang L, Cao H-X, He Y-S, Pan C-G, Sun T-K, Zhang X-Y, Wang C-Y, Liang G-X (2019) Facile preparation of amino-carbon dots/gold nanoclusters FRET ratiometric fluorescent probe for sensing of Pb2+/Cu2+. Sensors Actuators B Chem 282:78–84. https://doi.org/10.1016/j.snb.2018.11.058

    Article  CAS  Google Scholar 

  16. Vaz R, Bettini J, Junior J, Lima E, Botero W, Carinhanha Caldas Santos J, Schiavon M (2017) High luminescent carbon dots as an eco-friendly fluorescence sensor for Cr(VI) determination in water and soil samples. J Photochem Photobiol A Chem 346:502–511. https://doi.org/10.1016/j.jphotochem.2017.06.047

    Article  CAS  Google Scholar 

  17. Zhao J, Li F, Zhang S, An Y, Sun S (2019) Preparation of N-doped yellow carbon dots and N, P co-doped red carbon dots for bioimaging and photodynamic therapy of tumors. New J Chem 43(16):6332–6342. https://doi.org/10.1039/C8NJ06351F

    Article  CAS  Google Scholar 

  18. Zhang R, Chen W (2014) Nitrogen-doped carbon quantum dots: facile synthesis and application as a “turn-off” fluorescent probe for detection of Hg2+ ions. Biosens Bioelectron 55:83–90. https://doi.org/10.1016/j.bios.2013.11.074

    Article  CAS  PubMed  Google Scholar 

  19. Campos BB, Oliva MM, Contreras-Cáceres R, Rodriguez-Castellón E, Jiménez-Jiménez J, da Silva JCGE, Algarra M (2016) Carbon dots on based folic acid coated with PAMAM dendrimer as platform for Pt(IV) detection. J Colloid Interface Sci 465:165–173. https://doi.org/10.1016/j.jcis.2015.11.059

    Article  CAS  PubMed  Google Scholar 

  20. Song Y, Zhu C, Song J, Li H, Du D, Lin Y (2017) Drug-derived bright and color-tunable N-doped carbon dots for cell imaging and sensitive detection of Fe3+ in living cells. ACS Appl Mater Interfaces 9(8):7399–7405. https://doi.org/10.1021/acsami.6b13954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Song L, Cui Y, Zhang C, Hu Z, Liu X (2016) Microwave-assisted facile synthesis of yellow fluorescent carbon dots from o-phenylenediamine for cell imaging and sensitive detection of Fe3+ and H2O2. RSC Adv 6(21):17704–17712. https://doi.org/10.1039/C6RA02554D

    Article  CAS  Google Scholar 

  22. Vedamalai M, Periasamy AP, Wang C-W, Tseng Y-T, Ho L-C, Shih C-C, Chang H-T (2014) Carbon nanodots prepared from o-phenylenediamine for sensing of Cu2+ ions in cells. Nanoscale 6(21):13119–13125. https://doi.org/10.1039/C4NR03213F

    Article  CAS  PubMed  Google Scholar 

  23. Shieh Y-T, Chen J-Y, Twu Y-K, Chen W-J (2012) The effect of pH and ionic strength on the dispersion of carbon nanotubes in poly(acrylic acid) solutions. Polym Int 61(4):554–559. https://doi.org/10.1002/pi.3203

    Article  CAS  Google Scholar 

  24. Ju J, Zhang R, He S, Chen W (2014) Nitrogen-doped graphene quantum dots-based fluorescent probe for the sensitive turn-on detection of glutathione and its cellular imaging. RSC Adv 4(94):52583–52589. https://doi.org/10.1039/C4RA10601F

    Article  CAS  Google Scholar 

  25. Zhang Y, Cui P, Zhang F, Feng X, Wang Y, Yang Y, Liu X (2016) Fluorescent probes for “off–on” highly sensitive detection of Hg2+ and L-cysteine based on nitrogen-doped carbon dots. Talanta 152:288–300. https://doi.org/10.1016/j.talanta.2016.02.018

    Article  CAS  PubMed  Google Scholar 

  26. Zhuo Y, Miao H, Zhong D, Zhu S, Yang X (2015) One-step synthesis of high quantum-yield and excitation-independent emission carbon dots for cell imaging. Mater Lett 139:197–200. https://doi.org/10.1016/j.matlet.2014.10.048

    Article  CAS  Google Scholar 

  27. Kim H, Lee B-I, Byeon S-H (2015) The inner filter effect of Cr(vi) on Tb-doped layered rare earth hydroxychlorides: new fluorescent adsorbents for the simple detection of Cr(vi). Chem Commun 51(4):725–728. https://doi.org/10.1039/C4CC08543D

    Article  Google Scholar 

  28. Zhang D, Dong Z, Jiang X, Feng M, Li W, Gao G (2013) A proof-of-concept fluorescent strategy for highly selective detection of Cr(vi) based on inner filter effect using a hydrophilic ionic chemosensor. Anal Methods 5(7):1669–1675. https://doi.org/10.1039/C3AY26555B

    Article  CAS  Google Scholar 

  29. Sun J, Zhao J, Wang L, Li H, Yang F, Yang X (2018) Inner filter effect-based sensor for horseradish peroxidase and its application to fluorescence immunoassay. ACS Sensors 3(1):183–190. https://doi.org/10.1021/acssensors.7b00830

    Article  CAS  PubMed  Google Scholar 

  30. Gu W, Pei X, Cheng Y, Zhang C, Zhang J, Yan Y, Ding C, Xian Y (2017) Black phosphorus quantum dots as the Ratiometric fluorescence probe for trace mercury ion detection based on inner filter effect. ACS Sensors 2(4):576–582. https://doi.org/10.1021/acssensors.7b00102

    Article  CAS  PubMed  Google Scholar 

  31. Jia X, Li J, Wang E (2013) Cu Nanoclusters with aggregation induced emission enhancement. Small 9(22):3873–3879. https://doi.org/10.1002/smll.201300896

    Article  CAS  PubMed  Google Scholar 

  32. Park S, Seo J, Kim SH, Park SY (2008) Tetraphenylimidazole-based excited-state Intramolecular proton-transfer molecules for highly efficient blue electroluminescence. Adv Funct Mater 18(5):726–731. https://doi.org/10.1002/adfm.200700827

    Article  CAS  Google Scholar 

  33. Jain CK, Bandyopadhyay A, Bhadra A (2010) Assessment of ground water quality for drinking purpose, district Nainital, Uttarakhand, India. Environ Monit Assess 166(1):663–676. https://doi.org/10.1007/s10661-009-1031-5

    Article  CAS  PubMed  Google Scholar 

  34. Chuanxi W, Jiang K, Xu Z, Lin H, Zhang C (2016) Glutathione modified carbon-dots: from aggregation-induced emission enhancement property to “turn-on” sensing of temperature/Fe3+ ions in cells. Inorg Chem Front 3:514–522. https://doi.org/10.1039/C5QI00273G

    Article  CAS  Google Scholar 

  35. Wang H, Jiang Y, Tian C, Pan R, Dang F, Feng J, Li M, Zhang Y, Li H, Man C (2018) Determination of the transfer of lead and chromium from feed to raw milk in Holstein cows. Food Additives & Contaminants: Part A 35(10):1990–1999. https://doi.org/10.1080/19440049.2018.1496279

    Article  CAS  Google Scholar 

  36. Organization W (2011) Guidelines for drinking-water quality

  37. Zhang H, Wang Y, Xiao S, Wang H, Wang J-H, Feng L (2016) Rapid detection of Cr(VI) ions based on cobalt(II)-doped carbon dots. Biosens Bioelectron 87:46–52. https://doi.org/10.1016/j.bios.2016.08.010

    Article  CAS  PubMed  Google Scholar 

  38. Xu W, Yu L, Xu H, Zhang S, Xu W, Lin Y, Zhu X (2019) Water-dispersed silicon quantum dots for on-off-on fluorometric determination of chromium(VI) and ascorbic acid. Microchim Acta 186(10):673. https://doi.org/10.1007/s00604-019-3751-8

    Article  CAS  Google Scholar 

  39. Huang S, Qiu H, Zhu F, Lu S, Xiao Q (2015) Graphene quantum dots as on-off-on fluorescent probes for chromium(VI) and ascorbic acid. Microchim Acta 182(9):1723–1731. https://doi.org/10.1007/s00604-015-1508-6

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Open Project Program of the State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology (No. SKLFNS-KF-201908), and the National Natural Science Foundation of China (No. 21806083).

Author information

Authors and Affiliations

Authors

Contributions

Yao Chixuan: Conceptualization, Methodology, Investigation, Writing - Original Draft. Liu Qingrun: Data Curation, Validation. Zhao Ning: Visualization. Liu Jing-Min: Writing- Reviewing and Editing. Fang Guozhen: Project administration. Wang Shuo: Supervision, Funding acquisition.

Corresponding authors

Correspondence to Jing-Min Liu or Shuo Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 6219 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, C., Liu, Q., Zhao, N. et al. Ratiometric determination of Cr(VI) based on a dual-emission fluorescent nanoprobe using carbon quantum dots and a smartphone app. Microchim Acta 188, 89 (2021). https://doi.org/10.1007/s00604-021-04747-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-04747-8

Keywords

Navigation