Skip to main content
Log in

Curcumin Analogue Spectral, Nonlinear Optical Properties and All-optical Switching Using Visible, Low Power Cw Laser Beams

  • RESEARCH
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

In this study, we conducted the synthesis and diagnosis of compound denoted as 1A3, specifically, (2E,4E,9E,11E)-7-chloro-2,12-diphenyltrideca-2,4,9,11-tetraene-6,8-dione. The photoluminescent and UV-vis spectral properties of this compound are investigated. The compound is dissolved in both chloroform and DMF for analysis purposes. Compound 1A3's nonlinear optical (NLO) characteristics when dissolved in DMF, are extensively studied through a series of experiments including diffraction patterns (DPs) and Z-scan. The optical limiting (OL) property of the 1A3 compound is tested and a threshold value of 12.4 mW at the wavelength 473 nm is obtained. Additionally, we explored its potential for all-optical switching utilizing two low-power visible laser beams. Notably, we achieved a significant nonlinear refractive index (NLRI) reaching up to 5.921 x 10-11 m2/W. To analyze the obtained diffraction patterns, we employed the Fresnel-Kirchhoff integral equation and conducted meticulous simulations. The numerical outcomes showed satisfactory agreement with the experimental observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Availability of Data and Materials

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. Ambs P (2010) Optical computing: A 60- years adventure.  Adv Opt Technol 2010:372652 (15pp)

  2. Al-Hamdani UJ, Hassan QMA, Elias RS, Sultan HA, Alshlshat SA, Emshary CA (2023) Thermal nonlinearity and all-optical switching of synthesized Azo-Cl compound. Opt Mater 139: 113824 (12 pp)

  3. Al-Hamdani UJ, Hassan QMA, Emshary CA, Sultan HA, Dhumad AM, Al-Jaber AA (2021) All optical switching and the optical nonlinear properties of 4-(benzothiazolyldiazenyl)-3-chlorophenyl 4-(nonylthio)benzoate (EB-3Cl). Optik 248: 168196 (17 pp)

  4. Ruddock LS (1994) Nonlinear optical harmonic generation. Eur J Phys 15:53–58

    Article  CAS  Google Scholar 

  5. Gillespie A (1994) Optical information processing. Phys Ed 29:127–134

    Article  Google Scholar 

  6. Hassan QMA, Sultan HA, Al-Asadi AS, Bakr H, Hashim DH, Emshary CA (2018) Diffraction ring patterns and Z-scan measurements of nonlinear refractive index of khoba vegetable oil. J Bas Res (Sciences) 44:47–63

    Google Scholar 

  7. Emshary CA, Hassan QMA, Bakr H, Sultan HA (2021) Determination of the optical constants, nonlinear optical parameters and threshold limiting of methyl red-epoxy resin film. Physica B 62:2413354 (8 pp)

  8. Longi S (2022) Topological aspects in nonlinear optical frequency conversion. Phys Rev A 106:053503 (13pp)

  9. Luo C, Hao Y, Tong Z (2018) Research on digital image processing technologies and its application. Adv Inte Syst Res 163:587–592

    Google Scholar 

  10. Moosa AA, Abood MH (2017) Telecommunication of a secure data in optical fiber. Al-Mansour J 27:119–137

    Google Scholar 

  11. Huang L, Liu F (2012) Data storage technology and its development based on clouad computing proc Int Conf Comp Infor Appl (ICCIA) 812-814

  12. Abdullmajed HA, Sultan HA, Al-Asadi RH, Hassan QMA, Ali AA, Emshary CA (2022) Synthesis, DFT calculations and optical nonlinear properties of two derived Schiff base compounds from ethyl-4-amino benzoate. Phys Scr 97:025809 (18 pp)

  13. Hassan DA, Sultan HA, Al-Asadi RH, Hassan QMA, Emshary CA, Fahad T (2022) DFT calculation and nonlinear optical properties of (E)-(2)-((8-hydroxyquinolin-5yl)diazenyl)-5-sulfamoylpheneyl)mercury (II) chloride. Physica B 639:413908(13 pp)

  14. Al-Hujaj HH, Hassan QMA, Almashal FA, Sultan HA, Dhumad AM, Jassem AM, Emshary CA (2022) Benzenesulfonamide-thiazole system bearing an azide group: Synthesis and evaluation of its optical nonlinear responses. Optik 265:169477 (16 pp)

  15. Al-Hamdani UJ, Hassan QMA, Zaidan, AM, Sultan HA, Hussain KA, Emshary CA, Alabdullah ZTY (2022) Optical nonlinear properties and all optical switching in a synthesized liquid crystal. J Molec Liq 361:119676 (13 pp)

  16. Dhumad AD, Hassan QMA, Fahad T, Emshary CA, Raheem NA, Sultan HA (2021) Synthesis, structural characterization and optical nonlinear properties of two azo- β-diketones. J Molec Stru 1235:130196 (9 pp)

  17. Salim JK, Hassan QMA, Jassem AM, Sultan HA, Dhumad AM, Emshary CA (2022) An efficient ultrasound-assisted CH3COONa catalyzed synthesis of thiazolidinone molecule: Theoretical and nonlinear optical evaluations of thiazolidinone-Schiff base derivative. Opt Mater 133:112917(13 pp)

  18. Raheem NA, Hassan QMA, Dhumad AM, Sultan HA, Fahad T, Emshary CA, Ali NW (2023) DFT structural and optical nonlinear investigations of a synthesized new azo β-diketone dye. J Indian Chem Soci 100:100928 (11 pp)

  19. Moker MH, Hassan QMA, Ibraheem HS, Sultan HA, Dhumad AM, Emshary CA (2023) Synthesis, 2D-NMR analysis, DFT, and optical nonlinear studies of a new cyclic imide. J Molec Stru 1278:134923(10 pp)

  20. Issa MAR, Moker MH, Sultan HA, Dhumad AM, Hassan QMA, Emshary CA (2023) Synthesis, two dimensional NMR analysis, DFT, and nonlinear optical investigations of a new cyclic imide. J Molec Liq 379:121696 (12 pp)

  21. Hassan QMA, Al-Asadi RH, Sultan HA, Abdullmajed HA, Ali SA, Emshary CA (2023) A novel azo compound derived from ethyl-4-amino benzoate: synthesis, nonlinear optical properties and DFT investigations. Opt Quant Elect 55:392(18 pp)

  22. Jassem AM, Hassan QMA, Almashal FA, Sultan HA, Dhumad AM, Emshary CA, Albaaj LTT (2021) Spectroscopic study, theoretical calculations, and optical nonlinear properties of amino acid (glycine)-4-nitro benzaldeyhyde-derived Schiff base. Opt Mater 122:111750 (17 pp)

  23. Hassan QMA, Raheem NA, Emshary CA, Dhumad AM, Sultan HA, Fahad T (2022) Preparation, DFT and optical nonlinear studies of a novel azo-(β)- diketone dye. Opt Las Technol 148:107705(14 pp)

  24. Turmeric: The genus curcuma, Ruvindran EPN, Babu KN, Sivuraman K (2007) CRC Press, Taylor and Francis group, Boca Raton, London, Newyork

  25. Payton F, Sandnsky P, Alworth WL (2007) NMR study of the solution structure of curcumin. J Nat Prod 70:143–146

    Article  CAS  PubMed  Google Scholar 

  26. Ansari S, Jilani S, Abbasi H, Siraj MB, A, Ahmed Y, Khutoon R, Rifas AM (2022) Curcuma Imga: A treasure of medicinal properties. Cell Med 10:eq 1-7

  27. Han S, Yang Y (2005) Antimicrobial activity of wool fabric treated with curcumin. Dyes Pigments 64:157–161

    Article  CAS  Google Scholar 

  28. Barik A, Goel NK, Priyadasini K, Mohan H (2004) Effect of deuterated solvents on the excited state photophysical properties of curcumin. J Photo Sci 11:95–99

    CAS  Google Scholar 

  29. Henari FZ, Cassidy S (2015) Nonlinear optical studies of curcumin metal derivatives with cw laser. AIP Conf Proc 1653:020044-1–020044-10

    Google Scholar 

  30. Ganesh T, Kim JH, Yoon SJ, Kil B-H, Maldar NN, Han JW, Han S-H (2010) Photoactive curcumin-derived dyes with surface anchoring moieties used in ZnO nanoparticles-based dye-sensitized solar cell. Mater Chem Phys 123:62–66

    Article  CAS  Google Scholar 

  31. Jasim KhE, Cassidy S, Henari FZ, A. A. Dakhel AA, (2017) Curcumin dye-sensitized solar cell. J Enc Pow Engin 11:409–416

    CAS  Google Scholar 

  32. Zhao XZ, Jiang T, Wang L, Yang H, Zhang S, Zhon P (2010) Interaction of curcumin with Zn(11) and Cu(11) ions based on experiment and theoretical calculation. J Molec Struc 984:316–325

    Article  CAS  Google Scholar 

  33. Fathima R, Mujeeb A (2021) Plasmon enhanced linear and nonlinear optical properties of curcumin dye with silver nanoparticles. Dyes Pigments 189

  34. Margar SN, Sekar N (2016) Nonlinear optical properties of curcumin: solvato chromism-based approach and computational study. Mol Phys 114:1867–1879

    Article  CAS  Google Scholar 

  35. Priyadarsini KI (2009) Photophysics, photochemistry and photobiology of curcumin: studies from organic solutions, bio-mimetics and living cells. J Photochem Photobiolo C: Photochem Rev 10:81–85

    Article  CAS  Google Scholar 

  36. Kim S-H, Gwon S-Y, Burkinshaw SM, Son YA (2010) The-photo- and electrophysical properties of curcumin in a queans solution, Spectrochi. Acta part A: Mol Biomol Spectra 76:384–387

    Article  Google Scholar 

  37. Erez Y, Presiado I, Gepshtein R, Hwppert D (2011) Temperature dependence of the fluorescence properties of curcumin. J Phys Chem A 115:19962–19971

    Article  Google Scholar 

  38. Fontani M, Colombo A, Dragonetti C, Righetto S, Roberto D, Marinotto D (2020) Cyclometalated Ir (111) complexes with curcuminoid ligands as active second-order NLO chromophores and building blocks for SHG polymeric films. Inorganic 8:36 (12pp)

  39. Sakshi Pathak NK, Swain BC, Tripathy U (2020) Analyzing nonlinear trends in curcumin: comparative study. Opt Las Technol 121

  40. Henari FZ, Cassidy S, jasim KhE, Dakhel AA (2013) Nonlinear refractive index measurements of curcumin with cw laser. J Nonlin Opt Phys Mater 22:1350017 (8pp)

  41. Elias RS, Saeed BA, Saour KY, Al-Masoudi NA (2008) Microwave-assisted synthesis of dihydropyridones from curcumin. Tetrahedron Lett 49:3049–3051

    Article  CAS  Google Scholar 

  42. Saeed BA, Radhi WA, Elias RS (2010) Synthesis of novel 2,3-dihydro-4-pyridinones from bisdemethoxy curcumin under microwave irradiation. Tetrahedron Lett 51:5798–5800

    Article  CAS  Google Scholar 

  43. Saeed BA, Elias RS, Radhi WA (2010) Microwave- assisted synthesis of novel 2,3-dihydro-4-pyridinones. Molecules 15:8425–8430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Elias RS, Hassan QMA, Sultan HA, Al-Asadi AS, Saeed BA, Emshary CA (2018) Thermal nonlinearities for three curcuminoits measured by diffraction ring patterns and Z-scan under visible cw laser beam. Opt Las Technol 107:133–144

    Article  Google Scholar 

  45. Sultan HA, Hassan QMA, Al-Asadi AS, Elias RS, Bakr H, Saeed BA, Emshary CA (2019) Far-field diffraction patterns and optical limiting properties of bisdemethoxy curcumin solution under cw laser illumination. Opt Mater 85:500–509

    Article  Google Scholar 

  46. Elias RS, Hassan QMA, Emshary CA, Sultan HA, Saeed BA (2019) Formation and temporal evolution of diffraction patterns in a newly prepared dihydro pyridinones. Spechroch Acta Part A: Mol Biomol Spectra 223:117297

  47. Adil A, Hassan QMA, Alsalim TA, Sultan HA, Al-Asadi RH, Emshary CA (2023) Synthesis, theoretical properties using DFT method, and nonlinear optical properties of 4-methyl umbelliferone derivative. Optik 290:171320 (17 pp)

  48. Faisal AG, Hassan QMA, Alsalim TA, Sultan HA, Kamounah FS, Emshary CA (2022) Synthesis, optical nonlinear properties, and all-optical switching of curcumin analogues. J Phys Org Chem e440:1–16

  49. Jebur JH, Hassan QMA, Al-Mudaffer MF, Al-Asadi AS, Elias RS, Saeed BA, Emshary CA (2020) The gamma radiation effect on the surface morphology and optical properties of alphamethyl curcumin: PMMA. Phys Scr 95:045804 (10pp)

  50. Jeyaram S ( 2022) Natural pigments of aloe vera: A third‑order NLO material. Braz J Phys 52:24 (9 pp)

  51. Jeyaram S (2022) Spectral, third-order nonlinear optical and optical switching behavior of b-carotenoid extracted from phyllanthus niruri. Indian J Phys 96:1655–1661

  52. Jeyaram S, Jeancy Rany D (2023) Extraction of natural pigment from ocimum tenuiflorum using different polar solvents and their nonlinear optical characteristics. J Fluo 33:287–295

    Article  CAS  Google Scholar 

  53. Deepa S, Madhu S, Devasenan S, Murali G, Pancharatna Pattath D, Maaza M, Kaviyarasu K, Jeyaram S (2023) Extraction of natural pigment curcumin from curcuma longa: spectral, DFT, third-order nonlinear optical and optical limiting study, accepted to published in. J Fluo. https://doi.org/10.1007/s10895-023-03421-x

    Article  Google Scholar 

  54. Sujitha S D A, Jeyaram S (2023) Microwave-assisted extraction of betanin from beta vulgaris and their characterization and applications to nonlinear optics, accepted to published in Indian. J Phys. https://doi.org/10.1007/s12648-023-02908-4

  55. Faizan M, Mehkoom M, Afroz Z, Rodrigues V HN, Afzal SM, Ahmad S (2021) Experimental and computational investigation of novel dihydrated organic single crystal of 2,4,6-triaminopyrimidine and 3,5-dintrobenzoic acid: Linear and nonlinear optical response with limiting performance. J Sol Sta Chem 300:122255 (16 pp)

  56. M Mehkoom M Faizan Afzal1 SM, Ahmad S (2021)Z-scan screening of proton-shifted monohydrated organic salt: the linear, nonlinear, and optical limiting characteristics for photonic applications. J Mater Sci: Mater Electron 32:28750–28764

  57. Kamaal S, Mehkoom M, Ali A, Afzal SM, Alam MJ, Ahmad S, Ahmad M (2021) Potential third-order nonlinear optical response facilitated by intramolecular charge transfer in a simple Schiff base molecule:experimental and theoretical exploration. ACS Omega 6:6185–6194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Mehkoom M, Afzal SM, Ahmad S, Khan SA (2022) The new pyrazoline derivative 5-(3,4-Dimethoxy-phenyl)-3-(2,5-dimethyl-thiophene-3-yl),-4,5-dihydro-pyrazole-1-carbothioic acid amide (DDPA) as an advisable candidate for optical linearity, nonlinearity, and limiting performance. J Mol Liq 345(2022):117018 (11 pp)

  59. Mehkoom M, Ali A, Alam MJ, Ali F, Afzal SM, Ahmad S (2023) Molecular structure tuning impact on optical linearity and nonlinearity of novel push-pull conjugated organic systems for photonic applications. J Mol Stru 1278(2023):134921(15 pp)

  60. Oiko E, Al-Salim T, Saeed BA, Saeed MEM, Kadioglu O, Abbo HS, Titinchi SJJ, Efferyh T (2016) Modulation of P-glycoprotein activity by novel synthetic curcumin derivatives in sensitive and multidrug-resistant T-cell acute lymphoblastic leukemia cell lines. Toxico Appl Pharma 305:216–233

    Article  Google Scholar 

  61. Pabon HJJ (1964) A synthesis of curcumin and related compounds. Recueil 83:319–386

    Article  Google Scholar 

  62. Wang Q, Wu X, Wu L, Xiang Y (2019) Broadband nonlinear optical response in Bi2Se3 – Bi2Te3 heterostructure and its application in all-optical switching. AIP Adv 9:025022 (9pp)

  63. Sheik-Bahae M, Said AA, Wei T, Hagan DJ, Van Stryland EW (1990) Sensitive measurement of optical nonlinearities using a single beam  IEEE J Quant Electron 26:760–769

    Article  CAS  Google Scholar 

  64. Hassan QMA, Manshad RKH (2019) Surface morphology and optical limiting properties of azure B doped PMMA Film. Opt Mater 92:22–29

    Article  CAS  Google Scholar 

  65. Park S, Lee S-Y (2015) Significant enhancement of curcumin photoluminescence by aphotosensitizing organogel: An optical sensor for pyrrole detection. Sens Act B 220:318–325

    Article  CAS  Google Scholar 

  66. Nardo L, Paderno R, Andreoni A, Másson M, Haukvik T, Tønnesen HH (2008) Role of H-bond formation in the photoreactivity of curcumin. Spectroscopy 22:187–198

    Article  Google Scholar 

  67. Al-Timimy KhA, Sultan HA, Hassan QMA, Emshary CA, Abdullah AQ, Arebi EAR (2023) The preparation and nonlinear properties study of a mixture of polyurethane and neutral red dye solution, accepted to publishing in. J Fluo. https://doi.org/10.1007/s10895-023-03189-0

    Article  Google Scholar 

  68. Wu JJ, Chen S-H, Fan JY, Ong GS (1990) Propagation of a Gaussian-profile laser beam in nematic liquid crystals and the structure of it’s nonlinear diffraction rings. J Opt Soc Am B 7:1147–1157

    Article  CAS  Google Scholar 

  69. Vinitha G, Ramalingam, (2008) Single-beam Z-scan measurement of the third-order optical nonlinearities of triarylmethane dyes. Nonlin Quan Opt 18:1176–1182

    CAS  Google Scholar 

  70. Karimzadeh R (2012) Spatial self-phase modulation of a laser beam propagating through liquids with self-induced natural convection flow. J Opt 14:095701 (9 pp)

  71. Karimzadeh R (2013) Studies of spatial self-phase modulation of a laser beam passing through liquids. Opt Commun 286:329–333

    Article  CAS  Google Scholar 

  72. Zaidan MD, Al-Ktaifani MM, El-Daher MS, Allahham A, Ghanem A(2020) Diffraction ring patterns and nonlinear measurements of the tris(2',2-bipyridy)iron(II) tetra-fluoroborate. Opt Las Technol 131:106449(5 pp)

  73. Santamato E, Shen YR (1984) Field-curvutive effect on the diffraction ring patterns of a laser beam dressed by spatial self-phase modulation in a nematic film. Opt Lett 9:564–566

    Article  CAS  PubMed  Google Scholar 

  74. Deng L, He K, Zhou T, Li C (2005) Formation and evolution of far-field diffraction patterns of divergent and convergent Gaussian beams passing through self-focusing and self-defocusing medium. J Opt A Pure Appl Opt 7:409–415

    Article  Google Scholar 

  75. Chavez-Cerda S, Nascimento CM, M. Alencaz MARC, da Silva MGA, Meneyhetti MR, Hickmann JM (2006) Experimental observation of the far-field diffraction patterns of divergent and convergent Gaussian beams in self-defocusing media. Ann Opt XXIX ENFMC 1-6

  76. Agrawal GP (1987) Modulation instability induced by cross-phase modulation. Phys Rev Lett 24:880–883

    Article  Google Scholar 

  77. Matsuoka S, Miyanaga N, Amano S, Nakatsuka M (1997) Frequency modulation contr0lled by cross-phase modulation in optical fiber. Opt Lett 22:25–27

    Article  CAS  PubMed  Google Scholar 

  78. Jones DJ, Diddams SA, Tanbman MS, Cundiff ST, Ma L-S, Hall JL (2000) Frequency comb generation using femtosecond pulses and cross-phase modulation in optical fiber at arbitrary center frequencies. Opt Lett 25:308–310

    Article  CAS  PubMed  Google Scholar 

  79. Jia Y, Shan Y, Wu L, Dai X, Fan D, Xiang Y (2018) Broadband nonlinear optical resonance and all-optical switching of liquid phase exfoliated tungsten diselenide. Phot Res 6:1040–1046

    Article  CAS  Google Scholar 

  80. Zhang XJ, Yuan ZH, Yang RX, He Y, Qin YL, Si X, Jun H (2019) A review on spatial self-phase modulation of two dimensional material. J Cent South Univ 26:2295–2306

    Article  Google Scholar 

  81. Hassan QMA (2018) Study of nonlinear optical properties and optical limiting of acid green 5 in solution and solid film. Opt Las Technol 106:366–371

    Article  CAS  Google Scholar 

  82. Hassan QMA, Sultan HA, Al-Asadi AS, Kadhim AJ, Hussein NA, Emshary CA (2019) Synthesis, characterization, and study of the nonlinear optical properties of two new organic compounds. Synthetic Metals 257:116158(14 pp)

  83. Mutlaq DZ, Hassan QMA, Sultan HA, Emshary CA (2021) The optical nonlinear properties of a new synthesized azo-nitrone compound. Opt Mater 113:110815(13 pp)

  84. Ogusu K, Kohtani Y, Shao H (1996) Laser-induced diffraction rings from an absorbing solution. Opt Rev 3:232–234

    Article  CAS  Google Scholar 

  85. Cuppo FLS, Neto AMF, G´omez SL and Palffy-Muhoray P, (2002) Thermal-lens model compared with the Sheik-Bahae formalism in interpreting Z-scan experiments on lyotropic liquid crystals. J Opt Soc Am B 19:1342–1348

    Article  CAS  Google Scholar 

  86. Sendhil K, Vijayan C, Kothiyal MP (2006) Low-threshold optical power limiting of cw laser illumination based on nonlinear refraction in zinc tetraphenyl porphyrin. Opt Laser Technol 38:512–515

    Article  CAS  Google Scholar 

  87. Ali A, Mehkoom M, Ali F, Afzal SM, Ahmad S (2023) Synthesis of a novel organic chromophore (HCzN) for photophysical and nonlinear optical response showing its potential in photonic applications. Opt Quant Electron 55:901(16 pp)

  88. Mehkoom M, Ali A, Jane Alam M, Ali F, Afzal SM, Ahmad S (2022) Intramolecular charge transfer-based linear and nonlinear optical properties of a D–π–A–π–D type organic chromophore: Experimental and computational approach. J Nonlinear Opt Phys Mater 31:2250006

    Article  CAS  Google Scholar 

  89. Jeyaram S (2021) Study of third-order nonlinear optical properties of basic violet 3 dye in polar protic and aprotic solvents. J Fluo 31:1637–1644

    Article  CAS  Google Scholar 

  90. Sudha N, Surendran R, Jeyaram S (2023) Low power Z–scan studies of Schiff base (E)-N’-(4-(dimethylamino) benzylidene) isonicotinohydrazide for nonlinear optical applications, accepted to published in Indian. J Phys. https://doi.org/10.1007/s12648-023-02764-2

  91. Sudha N, Surendran R, Jeyaram S (2022) Synthesis, characterization, linear and nonlinear optical features of novel organic compound Pyridylcarboxamide chalcone for nonlinear optical applications. Opt Mater 131(2022):112668 (9 pp)

  92. Jeyaram S (2021) Intermolecular charge transfer in donor–acceptor substituted triarylmethane dye for NLO and optical limiting applications. J Mater Sci: Mater Electron 32:9368–9376

    CAS  Google Scholar 

  93. Durbin SD, Arakelian SM, Shen YR (1981) Laser-induced diffraction rings from a nematic liquid-crystal film. Opt Lett 6:411–413

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

No funding was received for this study.

Author information

Authors and Affiliations

Authors

Contributions

Fadhil A. Tuma and M. J. Ashoor participated in the characterization and analysis of the results, H. A. Sultan and F. A. Al-Saymari wrote the software program and manuscript, Qusay M.A. Hassan, Tahseen A. Alsalim, and Bahjat A. Saeed wrote the manuscript, C. A. Emshary wrote the main manuscript text – review & editing.

Corresponding author

Correspondence to Qusay M. A. Hassan.

Ethics declarations

Ethics Approval and Consent to Participate

The authors declare that their commitment to ethics related to his work and they have designed the experiments, collected and analyzed the data, and written the manuscript.

Consent for Publication

The authors declare their consent of publication.

Competing Interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tuma, F.A., Ashoor, M.J., Sultan, H.A. et al. Curcumin Analogue Spectral, Nonlinear Optical Properties and All-optical Switching Using Visible, Low Power Cw Laser Beams. J Fluoresc (2023). https://doi.org/10.1007/s10895-023-03475-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10895-023-03475-x

Keywords

Navigation