Skip to main content

Advertisement

Log in

Multicomponent Reaction Based Tolyl-substituted and Pyrene-Pyridine Conjugated Isomeric Ratiometric Fluorescent Probes: A Comparative Investigation of Photophysical and Hg(II)-Sensing Behaviors

  • Research
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Herein, the synthesis of pyrene conjugated 2,6-di-ortho-tolylpyridine and 2,6-di-para-tolylpyridine structural isomers were achieved efficiently through multicomponent Chichibabin pyridine synthesis reaction. The DFT, TD-DFT and experimental investigations were carried out to investigate the photophysical behaviors of the synthesized novel pyrene-pyridine based isomeric probes. Our studies revealed that, due to the continuous conjugation of the pyrene, pyridine and tolyl moieties, the dihedral angles of the trisubstituents on the central pyridine moiety significantly influences the photophysical properties of the synthesized novel pyrene based fluorescent probes. Further, we have comparatively investigated the sensing behaviors of the synthesized tolyl-substituted isomeric ratiometric fluorescent probes with metal ions, our studies reveals that both the ortho and para tolyl ratiometric fluorescent probes have distinct photoemissive properties in selectively sensing of Hg2+ ions. Our studies indicates that, the para-tolyl substituted isomer displays more red-shift in wavelength of emission band compared to its ortho isomer analogue during ratiometric fluorescent specific detection of Hg2+ ions.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

All the experimental and theoretical (DFT and TD-DFT) data generated or analyzed during this research work are included in this article and its supporting information file.

References

  1. Xu Z, Tang BZ, Wang Y, Ma D (2020) Recent advances in high performance blue organic light-emitting diodes based on fluorescence emitters. J Mater Chem C 8(8):2614–2642. https://doi.org/10.1039/C9TC06441A

    Article  CAS  Google Scholar 

  2. Chen S-Y, Li Z, Li K, Yu X-Q (2021) Small molecular fluorescent probes for the detection of lead, cadmium and mercury ions. Coord Chem Rev 429:213691

    Article  CAS  Google Scholar 

  3. Cao D, Liu Z, Verwilst P, Koo S, Jangjili P, Kim JS, Lin W (2019) Coumarin-based small-molecule fluorescent chemosensors. Chem Rev 119(18):10403–10519

    Article  CAS  PubMed  Google Scholar 

  4. Wu X, Shi W, Li X, Ma H (2019) Recognition moieties of small molecular fluorescent probes for bioimaging of enzymes. Acc Chem Res 52(7):1892–1904

    Article  CAS  PubMed  Google Scholar 

  5. Sun W, Li M, Fan J, Peng X (2019) Activity-based sensing and theranostic probes based on photoinduced electron transfer. Acc Chem Res 52(10):2818–2831

    Article  CAS  PubMed  Google Scholar 

  6. Hatano S, Horino T, Tokita A, Oshima T, Abe J (2013) Unusual negative photochromism via a short-lived Imidazolyl Radical of 1,1′-Binaphthyl-bridged Imidazole Dimer. J Am Chem Soc 135(8):3164–3172. https://doi.org/10.1021/ja311344u

    Article  CAS  PubMed  Google Scholar 

  7. Liu Y, Shan T, Yao L, Bai Q, Guo Y, Li J, Han X, Li W, Wang Z, Yang B, Lu P, Ma Y (2015) Isomers of pyrene–imidazole compounds: synthesis and configuration effect on Optical Properties. Org Lett 17(24):6138–6141. https://doi.org/10.1021/acs.orglett.5b02879

    Article  CAS  PubMed  Google Scholar 

  8. Casas-Solvas JM, Howgego JD, Davis AP (2014) Synthesis of substituted pyrenes by indirect methods. Org Biomol Chem 12(2):212–232

    Article  CAS  PubMed  Google Scholar 

  9. Zych D, Slodek A (2019) Pyrene derivatives with two types of substituents at positions 1, 3, 6, and 8–fad or necessity? RSC Adv 9(41):24015–24024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Xie Y, Li Z (2019) Recent advances in the Z/E Isomers of tetraphenylethene derivatives: Stereoselective Synthesis, AIE mechanism, Photophysical Properties, and application as Chemical Probes. Chem – Asian J 14(15):2524–2541. https://doi.org/10.1002/asia.201900282

    Article  CAS  PubMed  Google Scholar 

  11. He Y, Zhao B, Kan W, Ding L, Yu Z, Wang M, Song B, Wang L (2020) Two isomeric and distinguishable H2S fluorescence probes for monitoring spoilage of eggs and visualizing exogenous and endogenous H2S in living cells. Analyst 145(1):213–222. https://doi.org/10.1039/C9AN01629E

    Article  CAS  Google Scholar 

  12. Babu Velappan A, Husain A, Rajendran N, Ghazal B, Makhseed S (2022) Influence of microcrystal formation on the aggregated state emission behaviour of pyrene substituted phthalonitrile positional isomers. J Mol Liq 359:119273. https://doi.org/10.1016/j.molliq.2022.119273

    Article  CAS  Google Scholar 

  13. Figueira-Duarte TM, Müllen K (2011) Pyrene-based materials for Organic Electronics. Chem Rev 111(11):7260–7314. https://doi.org/10.1021/cr100428a

    Article  CAS  PubMed  Google Scholar 

  14. Shellaiah M, Venkatesan P, Thirumalaivasan N, Wu S-P, Sun K-W (2023) Pyrene-based fluorescent probe for “Off-on-Off” sequential detection of Cu2+ and CN- with HeLa cells imaging. Chemosensors 11(2):115

    Article  CAS  Google Scholar 

  15. Shellaiah M, Wu Y-H, Singh AS, Raju MVR, Lin HC (2013) Novel pyrene- and anthracene-based Schiff base derivatives as Cu2 + and Fe3 + fluorescence turn-on sensors and for aggregation induced emissions. J Mater Chem 1:1310–1318

    Article  CAS  Google Scholar 

  16. Zhou Y, Kim HN, Yoon J (2010) A selective ‘Off–On’ fluorescent sensor for Zn2+ based on hydrazone–pyrene derivative and its application for imaging of intracellular Zn2+. Bioorg Med Chem Lett 20(1):125–128. https://doi.org/10.1016/j.bmcl.2009.11.028

    Article  CAS  PubMed  Google Scholar 

  17. Hossain SM, Prakash V, Mamidi P, Chattopadhyay S, Singh AK (2020) Pyrene-appended bipyridine hydrazone ligand as a turn-on sensor for Cu2 + and its bioimaging application. RSC Adv 10(7):3646–3658. https://doi.org/10.1039/C9RA09376A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. D’Aléo A, Cecchetto E, De Cola L, Williams RM (2009) Metal Ion enhanced charge transfer in a terpyridine-bis-pyrene system. Sensors 9(5):3604–3626

    Article  PubMed  PubMed Central  Google Scholar 

  19. Fermi A, Ceroni P, Roy M, Gingras M, Bergamini G (2014) Synthesis, characterization, and Metal Ion Coordination of a Multichromophoric highly luminescent Polysulfurated Pyrene. Chem – Eur J 20(34):10661–10668. https://doi.org/10.1002/chem.201402021

    Article  CAS  PubMed  Google Scholar 

  20. Yuasa H, Miyagawa N, Izumi T, Nakatani M, Izumi M, Hashimoto H (2004) Hinge Sugar as a movable component of an excimer fluorescence Sensor. Org Lett 6(9):1489–1492. https://doi.org/10.1021/ol049628v

    Article  CAS  PubMed  Google Scholar 

  21. Zhou Y, Zhu C-Y, Gao X-S, You X-Y, Yao C (2010) Hg2+-Selective ratiometric and off – on Chemosensor based on the azadiene – pyrene derivative. Org Lett 12(11):2566–2569. https://doi.org/10.1021/ol1007636

    Article  CAS  PubMed  Google Scholar 

  22. Kim SH, Song KC, Ahn S, Kang YS, Chang S-K (eds) (2006) Hg2+-selective fluoroionophoric behavior of pyrene appended diazatetrathia-crown ether. Tetrahedron Letters 47(4):497–500. https://doi.org/10.1016/j.tetlet.2005.11.060

  23. Lucenti E, Forni A, Marinotto D, Previtali A, Righetto S, Cariati E (2019) Tuning the Linear and Nonlinear Optical Properties of Pyrene-Pyridine Chromophores by Protonation and Complexation to d10 Metal Centers §. Inorganics 7(3):38

    Article  CAS  Google Scholar 

  24. Pal S (2018) Pyridine: a useful ligand in transition metal complexes. Pyridine 57:57–74

    Google Scholar 

  25. Satyanarayan P (2018) Pyridine: A Useful Ligand in Transition Metal Complexes. In: Pratima Parashar P (ed) Pyridine. IntechOpen, Rijeka, p Ch. 5. https://doi.org/10.5772/intechopen.76986

  26. Chelucci G, Thummel RP (2002) Chiral 2, 2 ‘-bipyridines, 1, 10-phenanthrolines, and 2, 2 ‘: 6 ‘, 2 ‘‘-terpyridines: Syntheses and applications in asymmetric homogeneous catalysis. Chem Rev 102(9):3129–3170

    Article  CAS  PubMed  Google Scholar 

  27. Zafar MN, Atif AH, Nazar MF, Sumrra SH, Gul ES, Paracha R (2016) Pyridine and related ligands in transition metal homogeneous catalysis. Russ J Coord Chem 42(1):1–18. https://doi.org/10.1134/S1070328416010097

    Article  CAS  Google Scholar 

  28. Albratty M, Alhazmi HA (2022) Novel pyridine and pyrimidine derivatives as promising anticancer agents: a review. Arab J Chem 15(6):103846. https://doi.org/10.1016/j.arabjc.2022.103846

    Article  CAS  Google Scholar 

  29. Hamada Y (2018) Role of Pyridines in Medicinal Chemistry and Design of BACE1 inhibitors possessing a Pyridine Scaffold. https://doi.org/10.5772/intechopen.74719

  30. Kumar K, Kesavan K, Thakur D, Banik S, Jayakumar J, Cheng C-H, Jou J-H, Ghosh S (2021) Functional pyrene–pyridine-integrated hole-transporting materials for solution-processed OLEDs with reduced efficiency roll-off. ACS Omega XXXX. https://doi.org/10.1021/acsomega.0c04080

    Article  Google Scholar 

  31. Weng J, Mei Q, Ling Q, Fan Q, Huang W (2012) A new colorimetric and fluorescent ratiometric sensor for Hg2 + based on 4-pyren-1-yl-pyrimidine. Tetrahedron 68(14):3129–3134. https://doi.org/10.1016/j.tet.2011.12.071

    Article  CAS  Google Scholar 

  32. Upadhyay S, Singh A, Sinha R, Omer S, Negi K (2019) Colorimetric chemosensors for d-metal ions: A review in the past, present and future prospect. J Mol Struct 1193:89–102. https://doi.org/10.1016/j.molstruc.2019.05.007

    Article  CAS  Google Scholar 

  33. Rajasekar M, Ranjitha V, Rajasekar K (2023) Recent advances in Fluorescent-based cation sensors for biomedical applications. Results in Chemistry 5:100850. https://doi.org/10.1016/j.rechem.2023.100850

    Article  CAS  Google Scholar 

  34. Afrin A, Jayaraj A, Gayathri MS (2023) An overview of Schiff base-based fluorescent turn-on probes: a potential candidate for tracking live cell imaging of biologically active metal ions. Sens Diagnostics. https://doi.org/10.1039/D3SD00110E

    Article  Google Scholar 

  35. Patil NS, Dhake RB, Ahamed MI, Fegade U (2020) A Mini Review on Organic Chemosensors for Cation Recognition (2013-19). J Fluoresc 30(6):1295–1330. https://doi.org/10.1007/s10895-020-02554-7

    Article  CAS  PubMed  Google Scholar 

  36. Carter KP, Young AM, Palmer AE (2014) Fluorescent Sensors for Measuring Metal Ions in Living Systems. Chem Rev 114(8):4564–4601. https://doi.org/10.1021/cr400546e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Park S-H, Kwon N, Lee J-H, Yoon J, Shin I (2020) Synthetic ratiometric fluorescent probes for detection of ions. Chem Soc Rev 49(1):143–179

    Article  CAS  PubMed  Google Scholar 

  38. Lee MH, Kim JS, Sessler JL (2015) Small molecule-based ratiometric fluorescence probes for cations, anions, and biomolecules. Chem Soc Rev 44(13):4185–4191. https://doi.org/10.1039/c4cs00280f

    Article  CAS  PubMed  Google Scholar 

  39. de Vries W, Römkens PFAM, Schütze G (2007) Critical Soil Concentrations of Cadmium, Lead, and Mercury in View of Health Effects on Humans and Animals. Reviews of Environmental Contamination and Toxicology. Springer New York, New York, NY, pp 91–130. https://doi.org/10.1007/978-0-387-69163-3_4

    Chapter  Google Scholar 

  40. Zhan S, Xu H, Zhang D, Xia B, Zhan X, Wang L, Lv J, Zhou P (2015) Fluorescent detection of Hg2 + and Pb2 + using GeneFinder™ and an integrated functional nucleic acid. Biosens Bioelectron 72:95–99. https://doi.org/10.1016/j.bios.2015.04.021

    Article  CAS  PubMed  Google Scholar 

  41. Mei C, Lin D, Fan C, Liu A, Wang S, Wang J (2016) Highly sensitive and selective electrochemical detection of Hg2 + through surface-initiated enzymatic polymerization. Biosens Bioelectron 80:105–110. https://doi.org/10.1016/j.bios.2016.01.009

    Article  CAS  PubMed  Google Scholar 

  42. Goldhaber SB (2003) Trace element risk assessment: essentiality vs. toxicity. Regul Toxicol Pharmacol 38(2):232–242. https://doi.org/10.1016/S0273-2300(02)00020-X

    Article  CAS  PubMed  Google Scholar 

  43. Bernhoft RA (2012) Mercury toxicity and treatment: a review of the literature. J Environ Public Health 2012:460508. https://doi.org/10.1155/2012/460508

    Article  PubMed  Google Scholar 

  44. Hachiya N (2006) The history and the present of Minamata disease - entering the second half a century-. Jpn Med Assn J 49:112–118

  45. Saleem M, Rafiq M, Hanif M (2017) Organic Material Based Fluorescent Sensor for Hg2+: a Brief Review on Recent Development. J Fluoresc 27(1):31–58. https://doi.org/10.1007/s10895-016-1933-x

    Article  CAS  PubMed  Google Scholar 

  46. Jan AT, Azam M, Siddiqui K, Ali A, Choi I, Haq QMR (2015) Heavy metals and human health: mechanistic insight into toxicity and counter defense system of antioxidants. Int J Mol Sci 16(12):29592–29630. https://doi.org/10.3390/ijms161226183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Senthil Kumar P, Saravanan A (2017) 11 - Sustainable wastewater treatments in textile sector. In: Muthu SS (ed) Sustainable Fibres and Textiles. Woodhead Publishing, pp 323–346. https://doi.org/10.1016/B978-0-08-102041-8.00011-1

    Chapter  Google Scholar 

  48. Lin SM, Geng S, Li N, Li NB, Luo HQ (2016) D-penicillamine-templated copper nanoparticles via ascorbic acid reduction as a mercury ion sensor. Talanta 151:106–113. https://doi.org/10.1016/j.talanta.2016.01.028

    Article  CAS  PubMed  Google Scholar 

  49. Xing H, Xu J, Zhu X, Duan X, Lu L-M, Wang W, Zhang Y, Yang T (2015) Highly sensitive simultaneous determination of cadmium (II), lead (II), copper (II), and mercury (II) ions on N-doped graphene modified electrode. J Electroanal Chem 760. https://doi.org/10.1016/j.jelechem.2015.11.043

  50. Clarkson TW, Magos L (2006) The Toxicology of Mercury and Its Chemical Compounds. Crit Rev Toxicol 36(8):609–662. https://doi.org/10.1080/10408440600845619

    Article  CAS  PubMed  Google Scholar 

  51. Mehta K (2018) A Mini Review on: Fluorescent Sensors for Toxic Metal ions. 1:1–4

    Google Scholar 

  52. Farzin L, Shamsipur M, Sheibani S (2017) A review: Aptamer-based analytical strategies using the nanomaterials for environmental and human monitoring of toxic heavy metals. Talanta 174:619–627. https://doi.org/10.1016/j.talanta.2017.06.066

    Article  CAS  PubMed  Google Scholar 

  53. Srivastava P, Razi SS, Ali R, Gupta RC, Yadav SS, Narayan G, Misra A (2014) Selective naked-eye detection of Hg2 + through an efficient turn-on photoinduced electron transfer fluorescent probe and its real applications. Anal Chem 86(17):8693–8699

    Article  CAS  PubMed  Google Scholar 

  54. Misra A, Shahid M (2010) Chromo and fluorogenic properties of some azo-phenol derivatives and recognition of Hg2 + ion in aqueous medium by enhanced fluorescence. J Phys Chem C 114(39):16726–16739

    Article  CAS  Google Scholar 

  55. Shahid M, Srivastava P, Misra A (2011) An efficient naphthalimide based fluorescent dyad (ANPI) for F – and Hg 2 + mimicking OR, XNOR and INHIBIT logic functions. New J Chem 35(8):1690–1700

    Article  CAS  Google Scholar 

  56. Srivastava P, Shahid M, Misra A (2011) Protein assisted fluorescence enhancement of a dansyl containing fluorescent reagent: Detection of Hg + ion in aqueous medium. Org Biomol Chem 9(14):5051–5055

    Article  CAS  PubMed  Google Scholar 

  57. Razi SS, Ali R, Gupta RC, Dwivedi SK, Sharma G, Koch B, Misra A (2016) Phenyl-end-capped-thiophene (PT type) based ICT fluorescent probe (D–π–A) for detection of Hg2 + and Cu2 + ions: Live cell imaging and logic operation at molecular level. J Photochem Photobiol A 324:106–116

    Article  CAS  Google Scholar 

  58. Srivastava P, Ali R, Razi SS, Shahid M, Misra A (2013) Thiourea based molecular dyad (ANTU): Fluorogenic Hg2 + selective chemodosimeter exhibiting blue–green fluorescence in aqueous-ethanol environment. Sens Actuators B 181:584–595

    Article  CAS  Google Scholar 

  59. Gupta RC, Razi SS, Ali R, Dwivedi SK, Srivastava P, Singh P, Koch B, Mishra H, Misra A (2017) An efficient Hg2 + ensemble based on a triazole bridged anthracene and quinoline system for selective detection of cyanide through fluorescence turn-off–on response in solution and live cell. Sens Actuators B 251:729–738

    Article  CAS  Google Scholar 

  60. Lee J-S, Han MS, Mirkin CA (2007) Colorimetric Detection of Mercuric Ion (Hg2+) in Aqueous Media using DNA-Functionalized Gold Nanoparticles. Angew Chem Int Ed 46(22):4093–4096. https://doi.org/10.1002/anie.200700269

    Article  CAS  Google Scholar 

  61. Yan Z, Yuen M-F, Hu L, Sun P, Lee C-S (2014) Advances for the colorimetric detection of Hg2 + in aqueous solution. RSC Adv 4(89):48373–48388. https://doi.org/10.1039/C4RA07930B

    Article  CAS  Google Scholar 

  62. Chen P (2005) Molecular interfacial phenomena of polymers and biopolymers. Taylor and Francis US

  63. Divya KP, Savithri S, Ajayaghosh A (2014) A fluorescent molecular probe for the identification of zinc and cadmium salts by excited state charge transfer modulation. Chem Commun 50(45):6020–6022. https://doi.org/10.1039/C4CC00379A

    Article  CAS  Google Scholar 

  64. Ye F, Chai Q, Liang X-M, Li M-Q, Wang Z-Q, Fu Y (2017) A highly selective and sensitive fluorescent turn-off probe for Cu2 + based on a guanidine derivative. Molecules 22(10):1741

    Article  PubMed  PubMed Central  Google Scholar 

  65. Leonat L, Sbarcea G, Branzoi IV (2013) Cyclic voltammetry for energy levels estimation of organic materials. UPB Sci Bull Ser B 75(3):111–118

    CAS  Google Scholar 

  66. Mandal A, Choudhury A, Kumar R, Iyer PK, Mal P (2020) Exploring the semiconductor properties of a charge transfer cocrystal of 1-aminopyrene and TCNQ. CrystEngComm 22(4):720–727

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the National Institute of Technology Andhra Pradesh for providing the departmental infrastructure. We also sincerely acknowledge Prof. K. V. Ramanujachary, Rowan University, USA, for providing LCMS data during initial stage synthesis of probes.

Funding

The financial support was received from National Institute of Technology Andhra Pradesh (SEED grant No. NITAP/SD-G/19/2020).

Author information

Authors and Affiliations

Authors

Contributions

We confirm that the manuscript has been read and approved by all listed authors. The synthesis was performed by R. Niranjan. Absorption and emission studies were performed by R. Niranjan, G.D. Prasad, S. Achankunju, M. Arockiaraj, Ishita Neogi and V. Rajeshkumar. CV and IR characterizations were performed by K. Velumani and A.K. Sundramoorthy. Some partial experimental characterization done by K. Nachimuthu and J.L. Nallasivam. HRMS characterization and analysis done by V. Rajeshkumar. The DFT calculations, initial manuscript preparation and final manuscript corrections by S.H. Mahadevegowda.

Corresponding author

Correspondence to Surendra H. Mahadevegowda.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflicts of Interest/Competing Interest

The authors declare they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niranjan, R., Prasad, G.D., Achankunju, S. et al. Multicomponent Reaction Based Tolyl-substituted and Pyrene-Pyridine Conjugated Isomeric Ratiometric Fluorescent Probes: A Comparative Investigation of Photophysical and Hg(II)-Sensing Behaviors. J Fluoresc (2023). https://doi.org/10.1007/s10895-023-03467-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10895-023-03467-x

Keywords

Navigation