Skip to main content
Log in

Difluoromethyl phenoxathiinium salt: A new general and versatile difluoromethylating reagent with divergent ·CF2H, CF2H+, and:CF2 reactivities

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Development of practical and versatile electrophilic difluoromethylating reagent is still a grand challenge so far due to its inherent instability or low reactivity. Herein, we report the design and synthesis of difluoromethyl phenoxathiinium tetrafluoroborate (PT-CF2H+BF4) as a novel difluoromethylating reagent, which proves to be a bench-stable, general, powerful and versatile reagent with divergent ·CF2H, CF2H+, and:CF2 reactivities. Making use of this reagent, we demonstrated a vast array of difluoromethyl radical transfer reactions via diverse pathways involving photocatalyst-free visible-light induction, visible-light photoredox catalysis and visible-light mediation single electron transfer of EDA complex. Moreover, the green and highly effective CF2H+ and:CF2 transfer reactions were also readily accomplished.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Muller K, Faeh C, Diederich F. Science, 2007, 317: 1881–1886

    Article  ADS  PubMed  Google Scholar 

  2. Hagmann WK. J Med Chem, 2008, 51: 4359–4369

    Article  CAS  PubMed  Google Scholar 

  3. Wang J, Sánchez-Roselló M, Aceña JL, del Pozo C, Sorochinsky AE, Fustero S, Soloshonok VA, Liu H. Chem Rev, 2014, 114: 2432–2506

    Article  CAS  PubMed  Google Scholar 

  4. Gillis EP, Eastman KJ, Hill MD, Donnelly DJ, Meanwell NA. J Med Chem, 2015, 58: 8315–8359

    Article  CAS  PubMed  Google Scholar 

  5. Zhou Y, Wang J, Gu Z, Wang S, Zhu W, Aceña JL, Soloshonok VA, Izawa K, Liu H. Chem Rev, 2016, 116: 422–518

    Article  CAS  PubMed  Google Scholar 

  6. Zafrani Y, Yeffet D, Sod-Moriah G, Berliner A, Amir D, Marciano D, Gershonov E, Saphier S. J Med Chem, 2017, 60: 797–804

    Article  CAS  PubMed  Google Scholar 

  7. Inoue M, Sumii Y, Shibata N. ACS Omega, 2020, 5: 10633–10640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Berrino E, Michelet B, Martin-Mingot A, Carta F, Supuran CT, Thibaudeau S. Angew Chem Int Ed, 2021, 60: 23068–23082

    Article  CAS  Google Scholar 

  9. Jeschke P. ChemBioChem, 2004, 5: 570–589

    Article  CAS  Google Scholar 

  10. Ogawa Y, Tokunaga E, Kobayashi O, Hirai K, Shibata N. iScience, 2020, 23: 101467

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kirsch P, Bremer M. Angew Chem Int Ed, 2000, 39: 4216–4235

    Article  ADS  CAS  Google Scholar 

  12. Liu Y, Liu J, Chen D, Wang X, Zhang Z, Yang Y, Jiang L, Qi W, Ye Z, He S, Liu Q, Xi L, Zou Y, Wu C. Angew Chem Int Ed, 2020, 59: 21049–21057

    Article  CAS  Google Scholar 

  13. Li G, Su Z, Canil L, Hughes D, Aldamasy MH, Dagar J, Trofimov S, Wang L, Zuo W, Jerónimo-Rendon JJ, Byranvand MM, Wang C, Zhu R, Zhang Z, Yang F, Nasti G, Naydenov B, Tsoi WC, Li Z, Gao X, Wang Z, Jia Y, Unger E, Saliba M, Li M, Abate A. Science, 2023, 379: 399–403

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Améduri B, Hori H. Chem Soc Rev, 2023, 52: 4208–4247

    Article  PubMed  Google Scholar 

  15. O’Hagan D. Chem Soc Rev, 2008, 37: 308–319

    Article  PubMed  Google Scholar 

  16. Purser S, Moore PR, Swallow S, Gouverneur V. Chem Soc Rev, 2008, 37: 320–330

    Article  CAS  PubMed  Google Scholar 

  17. Meanwell NA. J Med Chem, 2018, 61: 5822–5880

    Article  CAS  PubMed  Google Scholar 

  18. Cametti M, Crousse B, Metrangolo P, Milani R, Resnati G. Chem Soc Rev, 2012, 41: 31–42

    Article  CAS  PubMed  Google Scholar 

  19. Erickson JA, McLoughlin JI. J Org Chem, 1995, 60: 1626–1631

    Article  CAS  Google Scholar 

  20. Sessler CD, Rahm M, Becker S, Goldberg JM, Wang F, Lippard SJ. J Am Chem Soc, 2017, 139: 9325–9332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zafrani Y, Sod-Moriah G, Yeffet D, Berliner A, Amir D, Marciano D, Elias S, Katalan S, Ashkenazi N, Madmon M, Gershonov E, Saphier S. J Med Chem, 2019, 62: 5628–5637

    Article  CAS  PubMed  Google Scholar 

  22. Zafrani Y, Saphier S, Gershonov E. Fut Med Chem, 2020, 12: 361–365

    Article  CAS  Google Scholar 

  23. Meanwell NA. J Med Chem, 2011, 54: 2529–2591

    Article  CAS  PubMed  Google Scholar 

  24. Martínez MD, Luna L, Tesio AY, Feresin GE, Durán FJ, Burton G. J Pharm Pharmacol, 2016, 68: 233–244

    Article  PubMed  Google Scholar 

  25. Hu J, Zhang W, Wang F. Chem Commun, 2009, 48: 7465–7478

    Article  Google Scholar 

  26. Liu YL, Yu JS, Zhou J. Asian J Org Chem, 2013, 2: 194–206

    Article  CAS  Google Scholar 

  27. Ni C, Hu M, Hu J. Chem Rev, 2015, 115: 765–825

    Article  CAS  PubMed  Google Scholar 

  28. Yang X, Wu T, Phipps RJ, Toste FD. Chem Rev, 2015, 115: 826–870

    Article  CAS  PubMed  Google Scholar 

  29. Dilman AD, Levin VV. Acc Chem Res, 2018, 51: 1272–1280

    Article  CAS  PubMed  Google Scholar 

  30. Reichel M, Karaghiosoff K. Angew Chem Int Ed, 2020, 59: 12268–12281

    Article  CAS  Google Scholar 

  31. Qin W, Chen J, Xiong W, Liu G. Chin J Org Chem, 2020, 40: 3177–3195

    Article  CAS  Google Scholar 

  32. Britton R, Gouverneur V, Lin JH, Meanwell M, Ni C, Pupo G, Xiao JC, Hu J. Nat Rev Methods Primers, 2021, 1: 47

    Article  CAS  Google Scholar 

  33. Sap JBI, Meyer CF, Straathof NJW, Iwumene N, am Ende CW, Trabanco AA, Gouverneur V. Chem Soc Rev, 2021, 50: 8214–8247

    Article  CAS  PubMed  Google Scholar 

  34. Qing FL, Liu XY, Ma JA, Shen Q, Song Q, Tang P. CCS Chem, 2022, 4: 2518–2549

    Article  CAS  Google Scholar 

  35. Song H, Li W, Wang X, Wang K, Li J, Liu S, Gao P, Duan X, Hu J, Hu M. CCS Chem, 2023, doi: https://doi.org/10.31635/ccschem.023.202302980

  36. Zhao H, Leng XB, Zhang W, Shen Q. Angew Chem Int Ed, 2022, 61: e202210151

    Article  CAS  Google Scholar 

  37. Feng XT, Ren JX, Gao X, Min QQ, Zhang X. Angew Chem Int Ed, 2022, 61: e202210103

    Article  CAS  Google Scholar 

  38. Zeng X, Li Y, Min QQ, Xue XS, Zhang X. Nat Chem, 2023, 15: 1064–1073

    Article  CAS  PubMed  Google Scholar 

  39. Zeng JL, Chen Z, Zhang FG, Ma JA. Org Lett, 2018, 20: 4562–4565

    Article  CAS  PubMed  Google Scholar 

  40. Zhang ZQ, Sang YQ, Wang CQ, Dai P, Xue XS, Piper JL, Peng ZH, Ma JA, Zhang FG, Wu J. J Am Chem Soc, 2022, 144: 14288–14296

    Article  CAS  PubMed  Google Scholar 

  41. Liu G, Mori S, Wang X, Noritake S, Tokunaga E, Shibata N. New J Chem, 2012, 36: 1769–1773

    Article  CAS  Google Scholar 

  42. Wang X, Liu G, Xu X, Shibata N, Tokunaga E, Shibata N. Angew Chem Int Ed, 2014, 53: 1827–1831

    Article  Google Scholar 

  43. Fujiwara Y, Dixon JA, Rodriguez RA, Baxter RD, Dixon DD, Collins MR, Blackmond DG, Baran PS. J Am Chem Soc, 2012, 134: 1494–1497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zeng X, Yan W, Paeth M, Zacate SB, Hong PH, Wang Y, Yang D, Yang K, Yan T, Song C, Cao Z, Cheng MJ, Liu W. J Am Chem Soc, 2019, 141: 19941–19949

    Article  CAS  PubMed  Google Scholar 

  45. Chen X, Gong X, Li Z, Zhou G, Zhu Z, Zhang W, Liu S, Shen X. Nat Commun, 2020, 11: 2756

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhang Y, Niu Y, Guo Y, Wang J, Zhang Y, Liu S, Shen X. Angew Chem Int Ed, 2022, 61: e202212201

    Article  ADS  CAS  Google Scholar 

  47. Zhang Y, Zhou G, Gong X, Guo Z, Qi X, Shen X. Angew Chem Int Ed, 2022, 61: e202202175

    Article  ADS  CAS  Google Scholar 

  48. Fang X, Wen S, Jin P, Bao W, Liu S, Cong H, Shen X. ACS Catal, 2022, 12: 2150–2157

    Article  CAS  Google Scholar 

  49. Chen S, Zhang Y, Liu S, Shen X. Sci China Chem, 2023, 66: 3141–3147

    Article  CAS  Google Scholar 

  50. Tang XJ, Thomoson CS, Dolbier Jr. WR. Org Lett, 2014, 16: 4594–4597

    Article  CAS  PubMed  Google Scholar 

  51. Lin Q, Xu X, Zhang K, Qing F. Angew Chem Int Ed, 2016, 55: 1479–1483

    Article  CAS  Google Scholar 

  52. Meyer CF, Hell SM, Misale A, Trabanco AA, Gouverneur V. Angew Chem Int Ed, 2019, 58: 8829–8833

    Article  CAS  Google Scholar 

  53. Qi XK, Zhang H, Pan ZT, Liang RB, Zhu CM, Li JH, Tong QX, Gao XW, Wu LZ, Zhong JJ. Chem Commun, 2019, 55: 10848–10851

    Article  CAS  Google Scholar 

  54. Prakash GKS, Weber C, Chacko S, Olah GA. Org Lett, 2007, 9: 1863–1866

    Article  CAS  PubMed  Google Scholar 

  55. Zhang W, Wang F, Hu J. Org Lett, 2009, 11: 2109–2112

    Article  CAS  PubMed  Google Scholar 

  56. Zhu J, Liu Y, Shen Q. Angew Chem Int Ed, 2016, 55: 9050–9054

    Article  CAS  Google Scholar 

  57. Lu SL, Li X, Qin WB, Liu JJ, Huang YY, Wong HNC, Liu GK. Org Lett, 2018, 20: 6925–6929

    Article  CAS  PubMed  Google Scholar 

  58. Liu GK, Li X, Qin WB, Peng XS, Wong HNC, Zhang L, Zhang X. Chem Commun, 2019, 55: 7446–7449

    Article  CAS  Google Scholar 

  59. Qin WB, Xiong W, Li X, Chen JY, Lin LT, Wong HNC, Liu GK. J Org Chem, 2020, 85: 10479–10487

    Article  CAS  PubMed  Google Scholar 

  60. Qin WB, Xiong W, Zhao YS, Fu KZ, Su L, Liu GK. Org Lett, 2021, 23: 8482–8487

    Article  CAS  PubMed  Google Scholar 

  61. Xiong W, Qin WB, Zhao YS, Fu KZ, Liu GK. Org Chem Front, 2022, 9: 2141–2148

    Article  CAS  Google Scholar 

  62. Eisenberger P, Gischig S, Togni A. Chem Eur J, 2006, 12: 2579–2586

    Article  CAS  PubMed  Google Scholar 

  63. Charpentier J, Früh N, Togni A. Chem Rev, 2015, 115: 650–682

    Article  CAS  PubMed  Google Scholar 

  64. Teruo U, Sumi I. Tetrahedron Lett, 1990, 31: 3579–3582

    Article  Google Scholar 

  65. Umemoto T, Ishihara S. J Am Chem Soc, 1993, 115: 2156–2164

    Article  CAS  Google Scholar 

  66. Teruo U, Sumi I. Tetrahedron Lett, 1990, 31: 3579–3582

    Article  Google Scholar 

  67. Teruo U, Sumi I. Tetrahedron Lett, 1990, 31: 3579–3582

    Article  Google Scholar 

  68. Berger F, Plutschack MB, Riegger J, Yu W, Speicher S, Ho M, Frank N, Ritter T. Nature, 2019, 567: 223–228

    Article  ADS  CAS  PubMed  Google Scholar 

  69. Li J, Chen J, Sang R, Ham WS, Plutschack MB, Berger F, Chabbra S, Schnegg A, Genicot C, Ritter T. Nat Chem, 2020, 12: 56–62

    Article  CAS  PubMed  Google Scholar 

  70. Alvarez EM, Karl T, Berger F, Torkowski L, Ritter T. Angew Chem Int Ed, 2021, 60: 13609–13613

    Article  CAS  Google Scholar 

  71. Cai Y, Chatterjee S, Ritter T. J Am Chem Soc, 2023, 145: 13542–13548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Alvarez EM, Bai Z, Pandit S, Frank N, Torkowski L, Ritter T. Nat Synth, 2023, 2: 548–556

    Article  ADS  Google Scholar 

  73. Jia H, Häring AP, Berger F, Zhang L, Ritter T. J Am Chem Soc, 2021, 143: 7623–7628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Jia H, Ritter T. Angew Chem Int Ed, 2022, 61: e202208978

    Article  ADS  CAS  Google Scholar 

  75. Deposition numbers CCDC2271273 (for reagent 1) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (92056201), Guangdong Basic and Applied Basic Research Foundation (2023A1515011008), and Shenzhen Science and Technology Program (the Stable Support Plan Program 20220808130958001). We sincerely thank Professor Henry N.C. Wong at The Chinese University of Hong Kong (Shenzhen) for his useful discussion and kind help, and thank the Instrumental Analysis Center of Shenzhen University for its analytical work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-Kai Liu.

Ethics declarations

Conflict of interestThe authors declare no conflict of interest

Additional information

Supporting information The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Electronic Supplementary Material

11426_2023_1862_MOESM1_ESM.pdf

Difluoromethyl phenoxathiinium salt: A new general and versatile difluoromethylating reagent with divergent ·CF2H, CF2H+, and:CF2 reactivities

Appendix

Supplementary material, approximately 352 KB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, YQ., Long, HX., Zhang, DD. et al. Difluoromethyl phenoxathiinium salt: A new general and versatile difluoromethylating reagent with divergent ·CF2H, CF2H+, and:CF2 reactivities. Sci. China Chem. 67, 953–962 (2024). https://doi.org/10.1007/s11426-023-1862-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1862-x

Navigation