Skip to main content
Log in

Facile Synthesis and Multiple Application of Ultralong-Afterglow Room Temperature Phosphorescence Aggregate Carbon Dots from Simple Raw Materials

  • Research
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Owing to the ultralong afterglow, room temperature decay phosphorescence nanomaterials have aroused enough attention. In the work, by simple one-pot solid-state thermal decomposition reaction, aggregate carbon dots (CDs) was prepared from trimesic and boric acid. Based on the intermolecular hydrogen bonds and intramolecular π-π stacking weak interaction from precursors, CDs was encapsulated in boron oxide matrix and formed aggregation. The aggregate state of CDs facilitated the triplet excited states (Tn), which could induce the room temperature decay phosphorescence properties. By careful investigation, under different excitation wavelengths at 254 and 365 nm, the aggregate CDs showed > 15 s and > 3 s room temperature phosphorescence emission in the naked eye, which was associated with 1516.12 ms and 718.62 ms lifetime respectively. And the aggregate CDs exhibited widespread application in encoding encryption, optical anti-counterfeiting and fingerprint identification etc. The interesting aggregate CDs revealed unexpected ultralong-afterglow room temperature decay phosphorescence properties and the work opened a window for constructing ultralong-afterglow room temperature decay phosphorescence aggregate CDs nanomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable requests.

References

  1. Xu X, Yan B (2023) Recent advances in room temperature phosphorescence materials: design strategies, internal mechanisms and intelligent optical applications. Phys Chem Chem Phys 25:1457–1475

    Article  CAS  PubMed  Google Scholar 

  2. Wei XY, Yang JW, Hu LL, Cao Y, Lai J, Cao FF, Gu JJ, Cao XF (2021) Recent advances in room temperature phosphorescent carbon dots: preparation, mechanism, and applications. J Mater Chem C 9:4425–4443

    Article  CAS  Google Scholar 

  3. Zhou YL, Qu LJ, Yi S, Wang C, Chen XH, Tang SM, Tang HL, Li YB, Wang KT, Zhao YL, Yang CL (2023) Dual Promotion of Phosphorus Groups for Ultralong Room temperature phosphorescence with high efficiency. Adv Opt Mater 11:2201904–2201915

    Article  CAS  Google Scholar 

  4. Ding HT, Sun YT, Tang M, Wen JY, Yue SW, Peng Y, Li F, Zheng LY, Wang SN, Shi YG, Cao Q (2023) Time-dependent photo-activated aminoborane room-temperature phosphorescence materials with unprecedented properties: simple, versatile, multicolor-tuneable, water resistance, optical information writing/erasing, and multilevel data encryption. Chem Sci 14:4633–4640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Forni A, Lucenti E, Botta C, Cariati E (2018) Metal free room temperature phosphorescence from molecular self-interactions in the solid state. J Mater Chem C 6:4603–4626

    Article  CAS  Google Scholar 

  6. Baryshnikov G, Minaev B, Ågren H (2017) Theory and calculation of the Phosphorescence Phenomenon. Chem Rev 117:6500–6537

    Article  CAS  PubMed  Google Scholar 

  7. Gao J, Zhao YY, You XX, Geng Y, Shan GG, Su ZM, Gao Y (2022) Theoretical search of a simple characteristic for long-lived organic room-temperature phosphorescence materials with H aggregation. J Mater Chem C 10:5425–5432

    Article  CAS  Google Scholar 

  8. Liu YS, Yang HY, Ma CH, Luo S, Xu MC, Wu ZW, Li W, Liu SX (2020) Luminescent transparent Wood based on lignin-derived Carbon Dots as a Building Material for Dual-Channel, Real-Time, and visual detection of Formaldehyde Gas. ACS Appl Mater Interfaces 12:36628–36638

    Article  CAS  PubMed  Google Scholar 

  9. Sun H, Shen S, Zhu LL (2022) Photo-stimuli-responsive Organic Room-Temperature Phosphorescent materials. ACS Mater Lett 4:1599–1615

    Article  CAS  Google Scholar 

  10. Peng Q, Ma HL, Shuai ZG (2021) Theory of long-lived room-temperature phosphorescence in Organic Aggregates. Acc Chem Res 54:940–949

    Article  CAS  PubMed  Google Scholar 

  11. Ding BB, Ma XA, Simple (2021) Easy Preparation and Tunable Strategy for Preparing Organic Room-Temperature phosphorescence. Langmuir 37:14229–14236

    Article  CAS  PubMed  Google Scholar 

  12. Zhang T, Wang CY, Ma X (2019) Metal-free room-temperature Phosphorescent Systems for pure White-Light Emission and Latent Fingerprint visualization. Ind Eng Chem Res 58:7778–7785

    Article  CAS  Google Scholar 

  13. Lai LM, Fang B, Fan MY, Cheng WY, Yin MZ (2021) Modulating room-temperature phosphorescence through the Synergistic Effect of Heavy-Atom Effect and Halogen Bonding. J Phys Chem C 125:16350–16357

    Article  CAS  Google Scholar 

  14. Wang HF, He Y, Ji TR, Yan XP (2009) Surface Molecular Imprinting on Mn-Doped ZnS Quantum Dots for Room-Temperature Phosphorescence Optosensing of Pentachlorophenol in Water. Anal Chem 81:1615–1621

    Article  CAS  PubMed  Google Scholar 

  15. Liu JM, Huang XM, Lin SQ, Cai WL, Lin CQ, Zhang LH, Lin X, Li ZM (2011) Determination of trace gastrin and diagnosis of human diseases using CdTe quantum dots labelled gastrin antibodies as phosphorescence sensors. Analyst 136:3789–3796

    Article  CAS  PubMed  Google Scholar 

  16. Yin YJ, Zhao H, Zhang LW, Huang JX, Zhang JJ, Chen J, Ni J, Song B, Liu SQ, Duan CY (2021) Color-Tunable Long-Lived Room-Temperature phosphorescence in a coordination polymer based on a nonaromatic ligand and its Phosphor/Coordination Polymer-Doped Systems. Chem Mater 33:7272–7282

    Article  CAS  Google Scholar 

  17. Lei YX, Dai WB, Li GC, Zhang YF, Huang XB, Cai ZX, Dong YP (2023) Stimulus-responsive Organic phosphorescence materials based on small molecular host–guest Doped Systems. J Phys Chem Lett 14:1794–1807

    Article  CAS  PubMed  Google Scholar 

  18. Guo S, Dai WB, Chen XQ, Lei YX, Shi JB, Tong B, Cai ZX, Dong YP (2021) Recent progress in pure Organic Room temperature phosphorescence of small molecular Host–Guest Systems. ACS Mater Lett 3:379–397

    Article  CAS  Google Scholar 

  19. Adv. Funct. Mater 2021, 31, 2107096

  20. Lu SY, Sui LZ, Liu JJ, Zhu SJ, Chen AM, Jin MX, Yang B (2017) Near-Infrared Photoluminescent Polymer–Carbon Nanodots with two-photon fluorescence. Adv Mater 29:1603443

    Article  Google Scholar 

  21. Yang MX, Feng TL, Chen YX, Zhao XH, Yang B (2019) Ionic-state Cobalt and Iron Co-doped Carbon Dots with Superior Electrocatalytic Activity for the Oxygen Evolution reaction. Chem Electro Chem 6:2088–2094

    CAS  Google Scholar 

  22. Xu YL, Wang BY, Zhang MM, Zhang JX, Li YD, Jia PJ, Zhang H, Duan LL, Li Y, Li YT, Qu XL, Wang SH, Liu DH, Zhou WP, Zhao HZ, Zhang HC, Chen LX, An XL, Lu SY, Zhang SJ (2022) Carbon Dots as a potential therapeutic Agent for the treatment of Cancer-Related Anemia. Adv Mater 34:2200905

    Article  CAS  Google Scholar 

  23. Hou L, Chen DD, Wang RT, Wang RB, Zhang HJ, Zhang ZZ, Nie ZH, Lu SY (2021) Transformable Honeycomb-Like Nanoassemblies of Carbon Dots for regulated Multisite Delivery and enhanced Antitumor Chemoimmunotherapy. Angew Chem Int Edit 60:6581–6592

    Article  CAS  Google Scholar 

  24. Jiang K, Zhang L, Lu JF, Xu CX, Cai CZ, Lin HW (2016) Triple-Mode Emission of Carbon Dots: applications for Advanced Anti-Counterfeiting. Angew Chem Int Edit 128:7384

    Article  Google Scholar 

  25. Li PF, Sun L, Xue SS, Qu D, An L, Wang XY, Sun ZC (2022) Recent advances of carbon dots as new antimicrobial agents. SmartMat 3:226–248

    Article  CAS  Google Scholar 

  26. Li W, Liu Y, Wu M, Feng X, Redfern SAT, Shang Y, Yong X, Feng T, Wu K, Liu Z, Li B, Chen Z, Tse JS, Lu SY, Yang B (2018) Carbon-Quantum-Dots-Loaded ruthenium nanoparticles as an efficient Electrocatalyst for Hydrogen Production in Alkaline Media. Adv Mater 30:1800676

    Article  Google Scholar 

  27. Li JR, Wu YZ, Gong X (2023) Evolution and fabrication of carbon dot-based room temperature phosphorescence materials. Chem Sci 14:3705–3729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Li GM, Liu C, Zhang XC, Zhai P, Lai XY, Jiang WX (2023) Low temperature synthesis of carbon dots in microfluidic chip and their application for sensing cefquinome residues in milk. Biosens Bioelectron 228:115187

    Article  CAS  PubMed  Google Scholar 

  29. Innocenzi P, Stagi L (2023) Carbon dots as oxidant-antioxidant nanomaterials, understanding the structure-properties relationship. A critical review. Nanotoday 50:101837

    Article  CAS  Google Scholar 

  30. Gao JR, Wu XL, Jiang X, Li M, He RX, Shen W (2023) Achieving purple light excitable high-efficiency temperature-responsive dual- and single-mode afterglow in carbon dots. Carbon 208:365–373

    Article  CAS  Google Scholar 

  31. Jiang K, Wang YH, Li ZJ, Lin HW (2020) Afterglow of carbon dots: mechanism, strategy and applications. Mater Chem Front 4:386–399

    Article  CAS  Google Scholar 

  32. Wang C, Chen YY, Hu TT, Chang Y, Ran GX, Wang M, Song QJ (2019) Color tunable room temperature phosphorescent carbon dot based nanocomposites obtainable from multiple carbon sources via a molten salt method. Nanoscale 11:11967–11974

    Article  CAS  PubMed  Google Scholar 

  33. Qin Y, He Y, Song GW (2023) Ultralong Room-Temperature phosphorescence of Boron Carbon Oxynitride Nanodots Encapsulated in Pyrophosphate in Dry and Wet States for Fingerprint Detection and Information Protection. ACS Appl Nano Mater 6:1360–1368

    Article  CAS  Google Scholar 

  34. Xia CL, Zhu SJ, Feng TL, Yang MX, Yang B (2019) Evolution and synthesis of Carbon Dots: from Carbon Dots to Carbonized Polymer Dots. Adv Sci 6:1901316

    Article  CAS  Google Scholar 

  35. Tao SY, Lu SY, Geng YJ, Zhu SJ, Redfern SAT, Song YB, Feng TL, Xu WQ, Yang B (2018) Design of Metal-Free Polymer Carbon Dots: a new class of room-temperature phosphorescent materials. Angew Chem Int Edit 130:2417–2422

    Article  Google Scholar 

  36. Shen J, Xu B, Wang ZF, Zhang J, Zhang WG, Gao ZH, Wang X, Zhu CF, Meng XG (2021) Aggregation-induced room temperature phosphorescent carbonized polymer dots with wide-range tunable lifetimes for optical multiplexing. J Mater Chem C 9:6781–6788

    Article  CAS  Google Scholar 

  37. Chai ZF, Wang C, Wang JF, Liu F, Xie YJ, Zhang YZ, Li JR, Lia QQ, Li Z (2017) Abnormal room temperature phosphorescence of purely organic boron-containing compounds: the relationship between the emissive behaviorand the molecular packing, and the potential related applications. Chem Sci 12:8336–8344

    Article  Google Scholar 

  38. Jiang K, Gao XL, Feng XY, Wang YH, Li ZJ, Lin HW (2020) Carbon Dots with Dual-Emissive, Robust, and Aggregation-Induced Room-Temperature phosphorescence characteristics. Angew Chem Int Edit 59:1263–1269

    Article  CAS  Google Scholar 

  39. Wang C, Chen YY, Xu YL, Ran GX, He YM, Song QJ (2020) Aggregation-Induced Room-Temperature Phosphorescence obtained from Water-Dispersible Carbon dot-based composite materials. ACS Appl Mater Interfaces 12:10791–10800

    Article  CAS  PubMed  Google Scholar 

  40. Mandal S, Durairaj P, Kommula B, Sarkar S, Bhattacharyya S (2023) Switching between fluorescence and room temperature phosphorescence in Carbon Dots: key role of Heteroatom functionalities. J Phys Chem C 127:2430–2439

    Article  CAS  Google Scholar 

  41. Wen YT, Liu HC, Zhang ST, Gao Y, Yan Y, Yang B (2019) One-dimensional π–π stacking induces highly efficient pure organic room-temperature phosphorescence and ternary-emission single-molecule white light. J Mater Chem C 40:12502–12508

    Article  Google Scholar 

  42. Gao R, Fang XY, Yan DP (2018) Direct white-light emitting room-temperature-phosphorescence thin films with tunable two-color polarized emission through orientational hydrogen-bonding layer-by-layer assembly. J Mater Chem C 16:4444–4449

    Article  Google Scholar 

  43. He ZK, Zhao WJ, Lam JWY, Peng Q, Ma HL, Liang GD, Shuai ZG, Tang B (2017) Z. White light emission from a single organic molecule with dual phosphorescence at room temperature. Nat Commun 8:416

    Article  PubMed  PubMed Central  Google Scholar 

  44. Jiang K, Wang YH, Gao XL, Cai CZ, Lin HW (2018) Facile, quick, and Gram-Scale synthesis of Ultralong-Lifetime Room temperature-phosphorescent Carbon Dots by Microwave Irradiation. Angew Chem Int Edit 57:6216–6220

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Science Foundation of China (21701203, 22108320) and the Henan Provincial Foundation for the Scientific and Technological Program (Grant No. 17A150057, 222102320047). Postgraduate Education Reform and Quality Improvement Project of Henan Province (YJS2023JD37).

Funding

This work is funded by the National Science Foundation of China (22108320).

Author information

Authors and Affiliations

Authors

Contributions

Wenping Zhu and Zengchen Liu wrote the main manuscript text. Like Wang, Yahong Chen, Weijie Yang, Yanxia Li and Yingying Xue prepared figures and conducted data analysis. All authors reviewed the manuscript.

Corresponding author

Correspondence to Zengchen Liu.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Ethics approval and consent to participate

There is no both human or animal studies.

Consent to Participate

This article has been prepared by the above mentioned authors who are all aware of its content and approve its submission.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

: The DFT calculation detail of trimesic and boric acid complex, SEM images (Figure S1), Solid-state 1HNMR (Figure S2), 13CNMR (Figure S3) and 11BNMR (Figure S4) of aggregate CDs, XPS spectrometry (Figure S5), the variable temperature phosphorescence spectra (Figure S6 and Figure S7) at 254 and 365 nm.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, W., Wang, L., Yang, W. et al. Facile Synthesis and Multiple Application of Ultralong-Afterglow Room Temperature Phosphorescence Aggregate Carbon Dots from Simple Raw Materials. J Fluoresc (2023). https://doi.org/10.1007/s10895-023-03462-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10895-023-03462-2

Keywords

Navigation