Skip to main content
Log in

Design and Synthesis of an Efficient Fluorescent Probe Based on Oxacalix[4]arene for the Selective Detection of Trinitrophenol (TNP) Explosives in Aqueous System

  • Research
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

We present the synthesis of a new oxacalix[4]arene system, DMANSOC, wherein two 5-(dimethylamino)-1-naphthalene sulfonamide subunits are attached to the lower rims of the basic oxacalix[4]arene platform. Extensive spectrophotometric studies were conducted to investigate the selectivity and sensitivity of DMANSOC towards nitroaromatic explosives. Detailed analysis of spectrophotometric data, utilizing techniques such as Stern-Volmer, Benesi-Hildebrand, Job’s plot, and interference study, unequivocally demonstrated the effectiveness of DMANSOC as a highly efficient fluorescent sensor for 2,4,6-trinitrophenol explosive (TNP) detection in an aqueous medium. The sensor exhibited a linear concentration range of 7.5 μM to 50 μM, with a low detection limit of 4.64 μM and a high binding affinity of 2.45 × 104 M towards TNP. Furthermore, the efficiency of the sensor in environmental samples contaminated with TNP was evaluated, yielding excellent recovery rates. Complementary DFT calculations and molecular dynamics simulations were performed to elucidate the mechanism behind the selective fluorescence quenching of DMANSOC in the presence of TNP.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Data will be available upon request.

References

  1. Goldman ER, Medintz IL, Whitley JL, Hayhurst A, Clapp AR, Uyeda HT, Deschamps JR, Lassman ME, Mattoussi H (2005) A hybrid quantum dot – antibody fragment fluorescence resonance energy transfer-based TNT sensor. J Am Chem Soc 127(18):6744–6751

    Article  CAS  PubMed  Google Scholar 

  2. Lan A, Li K, Wu H, Olson DH, Emge TJ, Ki W, Hong M, Li J (2009) A luminescent microporous metal–organic framework for the fast and reversible detection of high explosives. Angew Chem 121(13):2370–2374

    Article  Google Scholar 

  3. Enkin N, Sharon E, Golub E, Willner I (2014) Ag nanocluster/DNA hybrids: functional modules for the detection of nitroaromatic and RDX explosives. Nano Lett 14(8):4918–4922

    Article  CAS  PubMed  Google Scholar 

  4. Salinas Y, Martínez-Máñez R, Marcos MD, Sancenón F, Costero AM, Parra M, Gil S (2012) Optical chemosensors and reagents to detect explosives. Chem Soc Rev 41(3):1261–1296

    Article  CAS  PubMed  Google Scholar 

  5. He G, Peng H, Liu T, Yang M, Zhang Y, Fang Y (2009) A novel picric acid film sensor via combination of the surface enrichment effect of chitosan films and the aggregation-induced emission effect of siloles. J Mater Chem 19(39):7347–7353

    Article  CAS  Google Scholar 

  6. Wollin K-M, Dieter HH (2005) Toxicological guidelines for monocyclic nitro-, amino-and aminonitroaromatics, nitramines, and nitrate esters in drinking water. Arch Environ Contam Toxicol 49(1):18–26

    Article  CAS  PubMed  Google Scholar 

  7. Ju P, Zhang E, Jiang L, Zhang Z, Hou X, Zhang Y, Yang H, Wang J (2018) A novel microporous Tb-MOF fluorescent sensor for highly selective and sensitive detection of picric acid. RSC Adv 8(39):21671–21678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Holmgren E, Ek S, Colmsjö A (2012) Extraction of explosives from soil followed by gas chromatography–mass spectrometry analysis with negative chemical ionization. J Chromatogr A 1222:109–115

    Article  CAS  PubMed  Google Scholar 

  9. Cortada C, Vidal L, Canals A (2011) Determination of nitroaromatic explosives in water samples by direct ultrasound-assisted dispersive liquid–liquid microextraction followed by gas chromatography–mass spectrometry. Talanta 85(5):2546–2552

    Article  CAS  PubMed  Google Scholar 

  10. Schramm S, Vailhen D, Bridoux MC (2016) Use of experimental design in the investigation of stir bar sorptive extraction followed by ultra-high-performance liquid chromatography–tandem mass spectrometry for the analysis of explosives in water samples. J Chromatogr A 1433:24–33

    Article  CAS  PubMed  Google Scholar 

  11. Babaee S, Beiraghi A (2010) Micellar extraction and high performance liquid chromatography-ultra violet determination of some explosives in water samples. Anal Chim Acta 662(1):9–13

    Article  CAS  PubMed  Google Scholar 

  12. Zang J, Guo CX, Hu F, Yu L, Li CM (2011) Electrochemical detection of ultratrace nitroaromatic explosives using ordered mesoporous carbon. Anal Chim Acta 683(2):187–191

    Article  CAS  PubMed  Google Scholar 

  13. Lee J, Park S, Cho SG, Goh EM, Lee S, Koh S-S, Kim J (2014) Analysis of explosives using corona discharge ionization combined with ion mobility spectrometry–mass spectrometry. Talanta 120:64–70

    Article  CAS  PubMed  Google Scholar 

  14. Tabrizchi M, ILbeigi V (2010) Detection of explosives by positive corona discharge ion mobility spectrometry. J Hazard Mater 176(1–3):692–696

    Article  CAS  PubMed  Google Scholar 

  15. Gares KL, Hufziger KT, Bykov SV, Asher SA (2016) Review of explosive detection methodologies and the emergence of standoff deep UV resonance Raman. J Raman Spectrosc 47(1):124–141

    Article  CAS  Google Scholar 

  16. Hakonen A, Andersson PO, Schmidt MS, Rindzevicius T, Käll M (2015) Explosive and chemical threat detection by surface-enhanced Raman scattering: a review. Anal Chim Acta 893:1–13

    Article  CAS  PubMed  Google Scholar 

  17. Meaney MS, McGuffin VL (2008) Investigation of common fluorophores for the detection of nitrated explosives by fluorescence quenching. Anal Chim Acta 610(1):57–67

    Article  CAS  PubMed  Google Scholar 

  18. Tu R, Liu B, Wang Z, Gao D, Wang F, Fang Q, Zhang Z (2008) Amine-capped ZnS – Mn2 + nanocrystals for fluorescence detection of trace TNT explosive. Anal Chem 80(9):3458–3465

    Article  CAS  PubMed  Google Scholar 

  19. Germain ME, Knapp MJ (2009) Optical explosives detection: from color changes to fluorescence turn-on. Chem Soc Rev 38(9):2543–2555

    Article  CAS  PubMed  Google Scholar 

  20. Woodfin RL (2006) Trace chemical sensing of explosives. John Wiley & Sons

  21. Toal SJ, Trogler WC (2006) Polymer sensors for nitroaromatic explosives detection. J Mater Chem 16(28):2871–2883

    Article  CAS  Google Scholar 

  22. Hu Z, Deibert BJ, Li J (2014) Luminescent metal–organic frameworks for chemical sensing and explosive detection. Chem Soc Rev 43(16):5815–5840

    Article  CAS  PubMed  Google Scholar 

  23. Desai V, Panchal M, Dey S, Panjwani F, Jain VK (2021) Recent advancements for the recognization of Nitroaromatic Explosives using Calixarene based fluorescent probes. J Fluoresc, 1–13

  24. Mao X, Tian D, Li H (2012) p-Sulfonated calix [6] arene modified graphene as a ‘turn on’fluorescent probe for L-carnitine in living cells. Chem Commun 48(40):4851–4853

    Article  CAS  Google Scholar 

  25. Zhang G, Zhu X, Miao F, Tian D, Li H (2012) Design of switchable wettability sensor for paraquat based on clicking calix [4] arene. Org Biomol Chem 10(16):3185–3188

    Article  CAS  PubMed  Google Scholar 

  26. LÜ J, ZHANG, H., and, LU P (2007) Selective Electrochemical Recognition of o-Phenylenediol by a Novel Calix [4] arene derivative. Chin J Chem 25(10):1542–1546

    Article  Google Scholar 

  27. Zhou J, Chen M, Diao G (2013) Calix [4, 6, 8] arenesulfonates functionalized reduced graphene oxide with high supramolecular recognition capability: fabrication and application for enhanced host–guest electrochemical recognition. ACS Appl Mater Interfaces 5(3):828–836

    Article  CAS  PubMed  Google Scholar 

  28. Miao F, Zhan J, Zou Z, Tian D, Li H (2012) A new Hg2 + fluorescent sensors based on 1, 3-alternate thiacalix [4] arene (L) and the complex of [L + Hg2+] as turn-on sensor for cysteine. Tetrahedron 68(10):2409–2413

    Article  CAS  Google Scholar 

  29. Dhir A, Bhalla V, Kumar M (2008) Ratiometric sensing of Hg2 + based on the calix [4] arene of partial cone conformation possessing a dansyl moiety. Org Lett 10(21):4891–4894

    Article  CAS  PubMed  Google Scholar 

  30. Kim HJ, Kim SH, Kim JH, Lee JH, Lee C-H, Kim JS (2009) ICT-based Cu (II)-sensing 9, 10-anthraquinonecalix [4] crown. Tetrahedron Lett 50(23):2782–2786

    Article  CAS  Google Scholar 

  31. Ghosh S, Chakrabarty R, Mukherjee PS (2009) Design, synthesis, and characterizations of a series of Pt4 macrocycles and fluorescent sensing of Fe3+/Cu2+/Ni2 + through metal coordination. Inorg Chem 48(2):549–556

    Article  CAS  PubMed  Google Scholar 

  32. Dey S, Kumar A, Mondal PK, Modi KM, Chopra D, Jain VK (2020) An oxacalix [4] arene derived dual sensing fluorescent probe for the detection of as (v) and cr (vi) oxyanions in aqueous media. Dalton Trans 49(22):7459–7466

    Article  CAS  PubMed  Google Scholar 

  33. Kalaiyarasan G, Joseph J, Kumar P (2020) Phosphorus-doped Carbon Quantum Dots as Fluorometric Probes for Iron Detection. ACS Omega 5(35):22278–22288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kumar RS, Kumar SKA (2019) Highly selective fluorescent chemosensor for the relay detection of Al3 + and picric acid. Inorg Chem Commun 106:165–173

    Article  Google Scholar 

Download references

Funding

The authors thank the financial assistance provided by LSRBDRDO, New Delhi, through the project scheme REF. No (LSRB-01/15001/M/LSRB-373/BTB/2020). B. K. S. thanks UGC: Dr. D. S. Kothari Post-Doctoral Fellowship (Project No: F4-2/2006(BSR)/CH/20–21/0113) for financial support.

Author information

Authors and Affiliations

Authors

Contributions

Vishv Desai: Lead, Data curation, Writing- Original draft Preparation (First author). Krunal Modi: Formal analysis, Software. Falak Panjwani: Methodology, Visualization. Banabithi Koley Seth: Validation, Investigation. Manoj Vora: Writing- Reviewing and Editing. Jaymin Parikh: Computational study (writing). Vinod K Jain: Supervision, Project administration, Funding acquisition.

Corresponding authors

Correspondence to Krunal Modi or Vinod Kumar Jain.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Ethical Approval

Not Applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Supplementary Material 2

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Desai, V., Modi, K., Panjwani, F. et al. Design and Synthesis of an Efficient Fluorescent Probe Based on Oxacalix[4]arene for the Selective Detection of Trinitrophenol (TNP) Explosives in Aqueous System. J Fluoresc 34, 1219–1228 (2024). https://doi.org/10.1007/s10895-023-03352-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-023-03352-7

Keywords

Navigation