Skip to main content
Log in

Staining Properties of Selected Commercial Fluorescent Dyes Toward B- and Z-DNA

  • RESEARCH
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The properties of six commonly used, commercially available, fluorescent dyes were compared in staining right-handed B-DNA and left-handed Z-DNA. All showed different degree of fluorescence turn-on in the presence of B-DNA, but very little in the presence of Z-DNA. The optimal range of dye-DNA ratios of DNA was determined. While these dyes do not provide a turn-on type probe for Z-DNA, staining between B- and Z-DNA using dyes such as SYBR Green I was shown to be useful in tracking the kinetics of conformational changes between these two forms of DNA. Finally, SYBR Green I showed unique circular dichroism patterns in 4 M NaCl that change in the presence of double stranded DNA, both in the visible and UV range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. ThermoFisher (2010) The Molecular Probes Handbook, the 11th Ed

  2. Huang Q, Fu WL (2005) Comparative analysis of the DNA staining efficiencies of different fluorescent dyes in preparative agarose gel electrophoresis. Clin Chem Lab Med 43(8):841–842

    Article  CAS  PubMed  Google Scholar 

  3. Haines AM, Tobe SS, Kobus HJ, Linacre A (2015) Properties of nucleic acid staining dyes used in gel electrophoresis. Electrophoresis 36(6):941–944

    Article  CAS  PubMed  Google Scholar 

  4. Yan X, Grace WK, Yoshida TM, Habbersett RC, Velappan N, Jett JH, Keller RA, Marrone BL (1999) Characteristics of different nucleic acid staining dyes for DNA fragment sizing by flow cytometry. Anal Chem 71(24):5470–5480

    Article  CAS  PubMed  Google Scholar 

  5. Specht EA, Braselmann E, Palmer AE (2017) A critical and comparative review of fluorescent tools for live-cell imaging. Annu Rev Physiol 79:93–117

    Article  CAS  PubMed  Google Scholar 

  6. Gudnason H, Dufva M, Bang DD, Wolff A (2007) Comparison of multiple DNA dyes for real-time PCR: effects of dye concentration and sequence composition on DNA amplification and melting temperature. Nucleic Acids Res 35(19):e127

    Article  PubMed  PubMed Central  Google Scholar 

  7. Jovin T, Soumpasis DM, McIntosh LP (1987) The transition between B-DNA and Z-DNA. Annu Rev Phys Chem 38:521–560

    Article  CAS  Google Scholar 

  8. Rich A, Zhang S (2003) Z-DNA: the long road to biological function. Nat Rev Genet 4(7):566–572

    Article  CAS  PubMed  Google Scholar 

  9. Yan H, Powers R, Gibbons A, Joshi D (2017) Z-DNA: Chemistry and Biological Relevance. In Elsevier Reference Module in Chemistry, Molecular Sciences and Chemical Engineering; Reedijk, J., Ed.; Elsevier: Waltham, MA

  10. Fuertes MA, Cepeda V, Alonso C, Peŕez JM (2006) Molecular mechanisms for the B-Z transition in the example of poly[d(G-C)•(G-C)] polymers. A critical review. Chem Rev 106(6):2045–2064

    Article  CAS  PubMed  Google Scholar 

  11. Solodinin A, Gautrais A, Ollivier S, Yan H (2019) Incorporation of 5-fluoro-2’-deoxycytidine into oligonucleotides for the study of DNA structures by 19F NMR spectroscopy. ACS Omega 4:19716–19722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Biver T, García B, Leal JM, Secco F, Turriani E (2010) Left-handed DNA: intercalation of the cyanine thiazole orange and structural changes. A kinetic and thermodynamic approach. Phys Chem Chem Phys 12:13309–13317

    Article  CAS  PubMed  Google Scholar 

  13. Dumat B, Larsen AF, Wilhelmsson LM (2016) Studying Z-DNA and B- to Z-DNA transitions using a cytosine analogue FRET-pair. Nucleic Acids Res 44(11)

  14. Aeschbacher M, Reinhardt CA, Zbinden GA (1986) Rapid cell membrane permeability test using fluorescent dyes and flow cytometry. Cell Biol Toxicol 2(2):247–255

    Article  CAS  PubMed  Google Scholar 

  15. Cosa G, Focsaneanu KS, McLean JRN, McNamee JP, Scaiano JC (2004) Photophysical properties of fluorescent DNA-dyes bound to single- and double-stranded DNA in aqueous buffered solution. Photochem Photobiol 73(6):585–599

    Article  Google Scholar 

  16. Chiaraviglio L, Kirby JE (2014) Evaluation of impermeant, DNA-binding dye fluorescence as a real-time readout of eukaryotic cell toxicity in a high throughput screening format. Assay Drug Dev Technol 12(4):219–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mao F, Leung WY, Xin X (2007) Characterization of EvaGreen and the implication of its physicochemical properties for qPCR applications. BMC Biotechnol 7(76):1–16

    CAS  Google Scholar 

  18. Briggs C, Jones M (2005) SYBR Green I-induced fluorescence in cultured immune cells: A comparison with Acridine Orange. Acta Histochem 107(4):301–312

    Article  PubMed  Google Scholar 

  19. Guzaev M, Li X, Park C, Leung WY, Roberts L (2017) Comparison of nucleic acid gel stains. Cell permeability, safety, and sensitivity of ethidium bromide alternatives. Biotium

  20. Le Pecq JB (1971) Use of ethidium bromide for separation and determination of nucleic acids of various conformational forms and the measurement of their associated enzymes. In: Glick D (ed) Methods of Biochemical Analysis, vol 20. JohnWiley and Sons, New York, pp 41–86

    Chapter  Google Scholar 

  21. Saeidnia S, Abdollahi M (2013) Are other fluorescent tags used instead of ethidium bromide safer? DARU J Pharm Sci 21(1):71

    Article  Google Scholar 

  22. Fuller W, Waring MJ (1964) A molecular model for the interaction of ethidium bromide with deoxyribonucleic acid. Ber Bunsenges Phys Chem 68(8–9):805–808

    Article  CAS  Google Scholar 

  23. Nicoletti I, Migliorati G, Pagliacci MC, Grignani F, Riccardi C (1991) A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J Immunol Methods 139(2):271–279

    Article  CAS  PubMed  Google Scholar 

  24. Boulos L, Prévost M, Barbeau B, Coallier J, Desjardins R (1999) LIVE/DEAD® BacLightTM: application of a new rapid staining method for direct enumeration of viable and total bacteria in drinking water. J Microbiol Methods 37(1):77–86

    Article  CAS  PubMed  Google Scholar 

  25. Tsai CC, Jain SC, Sobell HM (1977) Visualization of drug-nucleic acid interactions at atomic resolution: I Structure of an ethidium/dinucleoside monophosphate crystalline complex, ethidium: 5-iodouridylyl (3′–5′) adenosine. J Mol Biol 114(3):301–315

    Article  CAS  PubMed  Google Scholar 

  26. Jain SC, Tsai CC, Sobell HM (1977) Visualization of drug-nucleic acid interactions at atomic resolution: II Structure of an ethidium/dinucleoside monophosphate crystalline complex, ethidium: 5-iodocytidylyl (3′–5′) guanosine. J Mol Biol 114(3):317–331

    Article  CAS  PubMed  Google Scholar 

  27. Jain SC, Sobell HM (1984) Visualization of drug-nucleic acid interactions at atomic resolution: VIII Structures of two ethidium/dinucleoside monophosphate crystalline complexes containing ethidium: cytidylyl(3′-5′) guanosine. J Biomol Struct Dyn 1(5):1179–1194

    Article  CAS  PubMed  Google Scholar 

  28. Kapuscinski J (1995) DAPI: a DNA-specific fluorescent probe. Biotech Histochem 70(5):220–233

    Article  CAS  PubMed  Google Scholar 

  29. Shoute LCT, Loppnow GR (2018) Characterization of the binding interactions between EvaGreen dye and dsDNA. Phys Chem Chem Phys 20:4772–4780

    Article  CAS  PubMed  Google Scholar 

  30. Beaudet MP, Cox GW, Yue S (2005) Molecular Probes, Inc., USA. WO/2005/033342

  31. Evenson WE, Boden LM, Muzikar KA, O’Leary DJ (2012) 1H and 13C NMR assignments for the cyanine dyes SYBR Safe and Thiazole Orange. J Org Chem 77(23):10967–10971

    Article  CAS  PubMed  Google Scholar 

  32. Pei R, Rothman J, Xie Y, Stojanovic MN (2009) Light-up properties of complexes between thiazole orange-small molecule conjugates and aptamers. Nucleic Acids Res 37(8):e59

    Article  PubMed  PubMed Central  Google Scholar 

  33. Jin X, Yue S, Wells KS, Singer VL (1994) SYBR™ Green I: a new fluorescent dye optimized for detection of picogram amounts of DNA in gels. Biophys J 66:A159

    Google Scholar 

  34. Zipper H, Brunner H, Bernhagen J, Vitzthum F (2004) Investigations on DNA intercalation and surface binding by SYBR Green I, its structure determination and methodological implications. Nucleic Acids Res 32(12):e103

    Article  PubMed  PubMed Central  Google Scholar 

  35. Dragan AI, Pavlovic R, McGivney JB, Casas-Finet JR, Bishop ES, Strouse RJ, Schenerman MA, Geddes CD (2012) SYBR Green I: fluorescence properties and interaction with DNA. J Fluoresc 22(4):1189–1199

    Article  CAS  PubMed  Google Scholar 

  36. Alaranta JM, Truong K-N, Matus MF, Malola SA, Rissanen KT, Shroff SS, Marjomäki VS, Häkkinen HJ, Lahtinen TM (2023) Optimizing the SYBR green related cyanine dye structure to aim for brighter nucleic acid visualization. Dyes Pigments 208:110844

    Article  Google Scholar 

  37. Hur JH, Lee AR, Yoo W, Lee JH, Kim KK (2019) Identification of a new Z-DNA inducer using SYBR green 1 as a DNA conformation sensor. FEBS Lett 593(18):2628–2636

    Article  CAS  PubMed  Google Scholar 

  38. Hannah C, Armitage BA (2004) DNA-templated assembly of helical cyanine dye aggregates: A supramolecular chain polymerization. Acc Chem Res 37(11):845–853

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was funded by the Natural Sciences and Engineering Research Council of Canada, and National Research Council of Canada.

Author information

Authors and Affiliations

Authors

Contributions

HB: writing – original draft, methodology, investigation, formal analysis. AM: review & editing, methodology. HY: Conceptualization, supervision, formal analysis, writing, review & editing.

Corresponding author

Correspondence to Hongbin Yan.

Ethics declarations

Ethical Approval

Not applicable.

Conflict of Interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bennett, HA., McAdorey, A. & Yan, H. Staining Properties of Selected Commercial Fluorescent Dyes Toward B- and Z-DNA. J Fluoresc 34, 1193–1205 (2024). https://doi.org/10.1007/s10895-023-03343-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-023-03343-8

Keywords

Navigation