Skip to main content
Log in

Molecular Engineering to Achieve AIE-active Fluorophore with Near-infrared (NIR) Emission and Temperature-sensitive Property

  • Research
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Near-infrared organic small molecule luminescent materials have the advantages of easy modification, high quantum efficiency, good biological affinity, and color adjustability; thus, have promising application prospects in the fields of photoelectric devices, sensitive detection, photodynamic therapy, and biomedical imaging. However, traditional organic luminescent molecules have the problems of short emission wavelength, aggregation-causing emission quenching, and low quantum yield. Herein, we successfully synthesized four D-π-A-D light-emitting molecules based on electron-withdrawing malonitrile group and different electron-donating arylamine groups. These compounds showed satisfactory solvatochromism, aggregation-induced emission, red and near-infrared fluorescence, high photoluminescence quantum efficiency and temperature response properties. This successful example of molecular engineering provides a valuable reference for the development of advanced NIR materials with AIE and temperature-sensitive properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All the relevant data are included in the manuscript and supplementary information.

References

  1. Yu Y, Xing H, Liu D, Zhao M, Sung HH-Y, Williams ID, Lam JWY, Xie G, Zhao Z, Tang BZ (2022) Solution-processed AIEgen NIR OLEDs with EQE approaching 15%. Angew Chem Int Ed 61(26):e202204279. https://doi.org/10.1002/anie.202204279

    Article  CAS  Google Scholar 

  2. Chen JX, Tao WW, Chen WC, Xiao YF, Wang K, Cao C, Yu J, Li S, Geng FX, Adachi C, Lee CS, Zhang XH (2019) Red/Near-Infrared thermally activated delayed fluorescence OLEDs with Near 100% internal Quantum Efficiency. Angew Chem Int Ed 58(41):14660–14665. https://doi.org/10.1002/anie.201906575

    Article  CAS  Google Scholar 

  3. Li T, Meyer T, Meerheim R, Höppner M, Körner C, Vandewal K, Zeika O, Leo K (2017) Aza-BODIPY dyes with heterocyclic substituents and their derivatives bearing a cyanide co-ligand: NIR donor materials for vacuum-processed solar cells. J Mater Chem A 5(21):10696–10703. https://doi.org/10.1039/C7TA02133J

    Article  CAS  Google Scholar 

  4. Li H, Kim Y, Jung H, Hyun JY, Shin I (2022) Near-infrared (NIR) fluorescence-emitting small organic molecules for cancer imaging and therapy. Chem Soc Rev 51(21):8957–9008. https://doi.org/10.1039/D2CS00722C

    Article  CAS  PubMed  Google Scholar 

  5. Ebaston TM, Nakonechny F, Talalai E, Gellerman G, Patsenker L (2021) Iodinated xanthene-cyanine NIR dyes as potential photosensitizers for antimicrobial photodynamic therapy. Dyes Pigm 184:108854. https://doi.org/10.1016/j.dyepig.2020.108854

    Article  CAS  Google Scholar 

  6. Liu HW, Hu XX, Li K, Liu Y, Rong Q, Zhu L, Yuan L, Qu FL, Zhang XB, Tan W (2017) A mitochondrial-targeted prodrug for NIR imaging guided and synergetic NIR photodynamic-chemo cancer therapy. Chem Sci 8(11):7689–7695. https://doi.org/10.1039/C7SC03454G

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wang L, Xiong Z, Ran X, Tang H, Cao D (2022) Recent advances of NIR dyes of pyrrolopyrrole cyanine and pyrrolopyrrole aza-BODIPY: synthesis and application. Dyes Pigm 198:110040. https://doi.org/10.1016/j.dyepig.2021.110040

    Article  CAS  Google Scholar 

  8. Weil T, Vosch T, Hofkens J, Peneva K, Mullen K (2010) The rylene colorant family–tailored nanoemitters for photonics research and applications. Angew Chem Int Ed 49(48):9068–9093. https://doi.org/10.1002/anie.200902532

    Article  CAS  Google Scholar 

  9. Tao XT, Miyata S, Sasabe H, Zhang GJ, Wada T, Jiang MH (2001) Efficient organic red electroluminescent device with narrow emission peak. Appl Phys Lett 78(3):279–281. https://doi.org/10.1063/1.1341226

    Article  CAS  Google Scholar 

  10. Chen C-T (2004) Evolution of Red Organic Light-Emitting Diodes: materials and Devices. Chem Mater 16(23):4389–4400. https://doi.org/10.1021/cm049679m

    Article  CAS  Google Scholar 

  11. Wu W-C, Yeh H-C, Chan L-H, Chen C-T (2022) Red Organic Light-Emitting Diodes with a non-doping Amorphous Red Emitter. Adv Mater 14(15):1072–1075. https://doi.org/10.1002/1521-4095(20020805)14:15<1072::AID-ADMA1072>3.0.CO;2-Z

    Article  Google Scholar 

  12. Zhang M, Zhao W (2021) Stereodefined tetraarylethylenes: synthesis and applications. Aggregate 2(4):e60. https://doi.org/10.1002/agt2.60

    Article  CAS  Google Scholar 

  13. Jiang G, Li C, Liu X, Chen Q, Li X, Gu X, Zhang P, Lai Q, Wang J (2020) Lipid droplet-targetable fluorescence guided photodynamic therapy of Cancer cells with an activatable AIE‐Active fluorescent probe for Hydrogen Peroxide. Adv Opt Mater 8(20):2001119. https://doi.org/10.1002/adom.202001119

    Article  CAS  Google Scholar 

  14. Chen Y, Lam JWY, Kwok RTK, Liu B, Tang BZ (2019) Aggregation-induced emission: fundamental understanding and future developments. Mater Horiz 6(3):428–433. https://doi.org/10.1039/C8MH01331D

    Article  CAS  Google Scholar 

  15. Wang L, Qian Y (2021) A SOCT-ISC type photosensitizer coumarin-BODIPY promoted by AIE effect: mechanism of singlet oxygen generation, simulated PDT in A-549 cells and fluorescence imaging in zebrafish. Dyes Pigm 195:109711. https://doi.org/10.1016/j.dyepig.2021.109711

    Article  CAS  Google Scholar 

  16. Liu H, Xiong LH, Kwok RTK, He X, Lam JWY, Tang BZ (2020) AIE Bioconjugates for Biomedical Applications. Adv Opt Mater 8(14):2000162. https://doi.org/10.1002/adom.202000162

    Article  CAS  Google Scholar 

  17. Niu G, Zhang R, Shi X, Park H, Xie S, Kwok RTK, Lam JWY, Tang BZ (2020) AIE luminogens as fluorescent bioprobes. TrAC-Trend Anal Chem 123:115769. https://doi.org/10.1016/j.trac.2019.115769

    Article  CAS  Google Scholar 

  18. Liu S, Feng G, Tang BZ, Liu B (2021) Recent advances of AIE light-up probes for photodynamic therapy. Chem Sci 12(19):6488–6506. https://doi.org/10.1039/D1SC00045D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Khan IM, Niazi S, Iqbal Khan MK, Pasha I, Mohsin A, Haider J, Iqbal MW, Rehman A, Yue L, Wang Z (2019) Recent advances and perspectives of aggregation-induced emission as an emerging platform for detection and bioimaging. TrAC-Trend Anal Chem 119:115637. https://doi.org/10.1016/j.trac.2019.115637

    Article  CAS  Google Scholar 

  20. Xue J, Liang Q, Wang R, Hou J, Li W, Peng Q, Shuai Z, Qiao J (2019) Highly efficient thermally activated delayed fluorescence via J-Aggregates with strong intermolecular charge transfer. Adv Mater 31(28):1808242. https://doi.org/10.1002/adma.201808242

    Article  CAS  Google Scholar 

  21. Wan Q, Zhang B, Tong J, Li Y, Wu H, Zhang H, Wang Z, Pan Y, Tang BZ (2019) Feasible structure-modification strategy for inhibiting aggregation-caused quenching effect and constructing exciton conversion channels in acridone-based emitters. Phys Chem Chem Phys 21(19):9837–9844. https://doi.org/10.1039/C9CP01706B

    Article  CAS  PubMed  Google Scholar 

  22. Gu X, Yao J, Zhang G, Zhang C, Yan Y, Zhao Y, Zhang D (2013) New electron-donor/acceptor-substituted tetraphenylethylenes: aggregation-induced emission with tunable emission color and optical-waveguide behavior. Chem Asian J 8(10):2362–2369. https://doi.org/10.1002/asia.201300451

    Article  CAS  PubMed  Google Scholar 

  23. HänninenP, Soukka J, Soini JT (2008) Two-photon excitation fluorescence Bioassays. Ann NY Acad Sci 1130(1):320–326. https://doi.org/10.1196/annals.1430.040

    Article  CAS  PubMed  Google Scholar 

  24. Qian G, Dai B, Luo M, Yu D, Zhan J, Zhang Z, Ma D, Wang ZY (2008) Band Gap Tunable, Donor-Acceptor-Donor charge-transfer heteroquinoid-based chromophores: Near Infrared Photoluminescence and Electroluminescence. Chem Mater 20(19):6208–6216. https://doi.org/10.1021/cm801911n

    Article  CAS  Google Scholar 

  25. Ajayaghosh A (2003) Donor-acceptor type low band gap polymers: polysquaraines and related systems. Chem Soc Rev 32(4):181–191. https://doi.org/10.1039/B204251G

    Article  CAS  PubMed  Google Scholar 

  26. Zhang Q, Kuwabara H, Potscavage WJ, Huang S, Hatae Y, Shibata T, Adachi C (2014) Anthraquinone-based intramolecular charge-transfer compounds: computational molecular design, thermally activated delayed fluorescence, and highly efficient red electroluminescence. J Am Chem Soc 136(52):18070–18081. https://doi.org/10.1021/ja510144h

    Article  CAS  PubMed  Google Scholar 

  27. Pinney MM, Mokhtari DA, Akiva E, Yabukarski F, Sanchez DM, Liang R, Doukov T, Martinez TJ, Babbitt PC, Herschlag D (2021) Parallel molecular mechanisms for enzyme temperature adaptation. Science 371(6533):1010–1015. https://doi.org/10.1126/science.aay2784

    Article  CAS  Google Scholar 

  28. Persson LB, Ambati VS, Brandman O (2020) Cellular Control of Viscosity Counters Changes in temperature and energy availability. Cell 183(6):1572–1578. https://doi.org/10.1016/j.cell.2020.10.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lin D (2020) How stress can cause a fever. Nature 580:189–190. https://doi.org/10.1038/d41586-020-00873-0

    Article  CAS  PubMed  Google Scholar 

  30. Scholey JM, Brust-Mascher I, AMogilner (2003) Cell division. Nature 422(6933):746–752. https://doi.org/10.1038/nature01599

    Article  CAS  PubMed  Google Scholar 

  31. Ben-Dor A, Shamir R, Yakhini Z (1999) Clustering gene expression patterns. J Comput Biol 6(3–4):281–297. https://doi.org/10.1089/106652799318274

    Article  CAS  PubMed  Google Scholar 

  32. Olsen LF, Degn H (1977) Chaos in an enzyme reaction. Nature 267(5607):177–178. https://doi.org/10.1038/267177a0

    Article  CAS  PubMed  Google Scholar 

  33. Mwafy SE, El-Guindy DM (2020) Pathologic assessment of tumor-associated macrophages and their histologic localization in invasive breast carcinoma. J Egypt Natl Canc Inst 32(1):1–11. https://doi.org/10.1186/s43046-020-0018-8

    Article  Google Scholar 

  34. Ogle MM, McWilliams ADS, Ware MJ, Curley SA, Corr SJ, Martí AA (2019) Sensing temperature in Vitro and in cells using a BODIPY Molecular Probe. J Phys Chem B 123(34):7282–7289. https://doi.org/10.1021/acs.jpcb.9b04384

    Article  CAS  PubMed  Google Scholar 

  35. Shen F, Yang W, Cui J, Hou Y, Bai G (2021) Small-molecule fluorogenic probe for the detection of mitochondrial temperature in vivo. Anal Chem 93(40):13417–13420. https://doi.org/10.1021/acs.analchem.1c03554

    Article  CAS  PubMed  Google Scholar 

  36. Ogle MM, McWilliams ADS, Jiang B, Martí AA (2020) Latest Trends in Temperature sensing by Molecular Probes. ChemPhotoChem 4:1–17. https://doi.org/10.1002/cptc.201900255

    Article  CAS  Google Scholar 

  37. Shen XY, Yuan WZ, Liu Y, Zhao Q, Lu P, Ma Y, Williams ID, Qin A, Sun JZ, Tang BZ (2012) Fumaronitrile-Based Fluorogen: Red to Near-Infrared fluorescence, Aggregation-Induced Emission, Solvatochromism, and twisted intramolecular charge transfer. J Phys Chem C 116(19):10541–10547. https://doi.org/10.1021/jp303100a

    Article  CAS  Google Scholar 

  38. Zhu Q, Sun Y, Fu M, Bian M, Zhu X, Wang K, Geng H, Zeng W, Shen W, Hu Y (2023) Ultrasensitive Small-Molecule fluorescent Thermometer reveals hot Mitochondria in surgically resected human tumors. ACS Sens 8(1):51–60. https://doi.org/10.1021/acssensors.2c01563

    Article  CAS  PubMed  Google Scholar 

  39. Wang C, Chi W, Qiao Q, Tan D, Xu Z, Liu X (2021) Twisted intramolecular charge transfer (TICT) and twists beyond TICT: from mechanisms to rational designs of bright and sensitive fluorophores. Chem Soc Rev 50(22):12656–12678. https://doi.org/10.1039/D1CS00239B

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Scientific Research and Technology Development Program of Guangxi (Grant numbers [Guike AA22067081] ).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by [Peng Zhao], [Dongqing Lu], [ Lin Li] and [Xiongzhi Wu]. The first draft of the manuscript was written by [Liqiang Yan] and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Xiongzhi Wu or Liqiang Yan.

Ethics declarations

Competing Interests

The authors have no relevant financial or non-financial interests to disclose.

Ethics Approval

Not Applicable

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, P., Lu, D., Li, L. et al. Molecular Engineering to Achieve AIE-active Fluorophore with Near-infrared (NIR) Emission and Temperature-sensitive Property. J Fluoresc 34, 1109–1117 (2024). https://doi.org/10.1007/s10895-023-03338-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-023-03338-5

Keywords

Navigation