Skip to main content

Advertisement

Log in

Recent Advances and Progress for the Fabrication and Surface Modification of AIE-active Organic-inorganic Luminescent Composites

  • Review
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Organic dyes based hybrid organic-inorganic luminescent nanomaterials with high quantum efficiency, good physical or chemical stability, and favorable biocompatibility, have attracted growing attention recently because of their important applications in the areas of biomedical imaging, chemical sensors, and light-emitting diodes (LEDs). Nevertheless, conventional fluorescence molecules suffer from aggregation-caused quenching (ACQ) when they are doped into inorganic nanomaterials. Aggregation-induced emission (AIE) is an abnormal and intriguing fluorescent phenomenon that has aroused increasing interest for various applications especially in biomedical fields. Compared with conventional organic dyes, the AIE-active molecules will emit more intense fluorescence in their aggregates or solid states. It provides an elegant route to overcome the drawbacks of conventional organic molecules. Over the past few decades, the fabrication and surface modification of various organic-inorganic luminescent composites doped with AIE-active molecules have been reported. Therefore, it is highly desirable to summarize these advances. In this review, recent advances and progress in constructing various AIEgens-doped organic-inorganic hybrid nanocomposites and their subsequent surface modification were summarized. We hope this review could further promote the research of AIE-active functional materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Su, L.; Zhang, X.; Zhang, Y.; Rogach, A. L., Recent progress in quantum dot based white light-emitting devices. In Photoactive semiconductor nanocrystal quantum dots, Springer, 2017; pp 123–147.

    Chapter  Google Scholar 

  2. Zhao, Z.; Lam, J. W.; Tang, B. Z. Tetraphenylethene: A versatile AIE building block for the construction of efficient luminescent materials for organic light-emitting diodes. J. Mater. Chem. 2012, 22, 23726–23740.

    Article  CAS  Google Scholar 

  3. Dai, Q.; Duty, C. E.; Hu, M. Z. Semiconductor-nanocrystalsbased white light-emitting diodes. Small 2010, 6, 1577–1588.

    Article  CAS  PubMed  Google Scholar 

  4. Zou, L.; Gu, Z.; Sun, M. Review of the application of quantum dots in the heavy-metal detection. Toxicol. Environ. Chem. 2015, 97, 477–490.

    Article  CAS  Google Scholar 

  5. Jin, R.; Zeng, C.; Zhou, M.; Chen, Y. Atomically precise colloidal metal nanoclusters and nanoparticles: Fundamentals and opportunities. Chem. Rev. 2016, 116, 10346–10413.

    Article  CAS  PubMed  Google Scholar 

  6. Zhang, L.; Wang, E. Metal nanoclusters: New fluorescent probes for sensors and bioimaging. Nano Today 2014, 9, 132–157.

    Article  CAS  Google Scholar 

  7. Lim, S. Y.; Shen, W.; Gao, Z. Carbon quantum dots and their applications. Chem. Soc. Rev. 2015, 44, 362–381.

    Article  CAS  PubMed  Google Scholar 

  8. Wegner, K. D.; Hildebrandt, N. Quantum dots: Bright and versatile in vitro and in vivo fluorescence imaging biosensors. Chem. Soc. Rev. 2015, 44, 4792–4834.

    Article  CAS  PubMed  Google Scholar 

  9. Tao, Y.; Li, M.; Ren, J.; Qu, X. Metal nanoclusters: Novel probes for diagnostic and therapeutic applications. Chem. Soc. Rev. 2015, 44, 8636–8663.

    Article  CAS  PubMed  Google Scholar 

  10. Huang, H.; Liu, M.; Tuo, X.; Chen, J.; Mao, L.; Wen, Y.; Tian, J.; Zhou, N.; Zhang, X.; Wei, Y. One-step fabrication of PEGylated fluorescent nanodiamonds through the thiol-ene click reaction and their potential for biological imaging. Appl. Surf. Sci. 2018, 439, 1143–1151.

    Article  CAS  Google Scholar 

  11. Shi, Y.; Liu, M.; Deng, F.; Zeng, G.; Wan, Q.; Zhang, X.; Wei, Y. Recent progress and development on polymeric nanomaterials for photothermal therapy: A brief overview. J. Mater. Chem. B 2017, 5, 194–206.

    Article  CAS  Google Scholar 

  12. Huang, H.; Liu, M.; Jiang, R.; Chen, J.; Mao, L.; Wen, Y.; Tian, J.; Zhou, N.; Zhang, X.; Wei, Y. Facile modification of nanodiamonds with hyperbranched polymers based on supramolecular chemistry and their potential for drug delivery. J. Colloid Interf. Sci. 2018, 513, 198–204.

    Article  CAS  Google Scholar 

  13. Smith, A. M.; Duan, H.; Mohs, A. M.; Nie, S. Bioconjugated quantum dots for in vivo molecular and cellular imaging. Adv. Drug Deliver. Rev. 2008, 60, 1226–1240.

    Article  CAS  Google Scholar 

  14. Pan, Y.; Chang, T.; Marcq, G.; Liu, C.; Kiss, B.; Rouse, R.; Mach, K. E.; Cheng, Z.; Liao, J. C. In vivo biodistribution and toxicity of intravesical administration of quantum dots for optical molecular imaging of bladder cancer. Sci. Rep. 2017, 7, 9309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ahmad, A.; Zakaria, N. D.; Razak, K. A. In Photostability effect of silica nanoparticles encapsulated fluorescence dye, AIP. Conf. Proc, AIP Publishing, 2017; p 020010.

    Google Scholar 

  16. Long, Z.; Liu, M.; Jiang, R.; Wan, Q.; Mao, L.; Wan, Y.; Deng, F.; Zhang, X.; Wei, Y. Preparation of water soluble and biocompatible AIE-active fluorescent organic nanoparticles via multicomponent reaction and their biological imaging capability. Chem. Eng. J. 2017, 308, 527–534.

    Article  CAS  Google Scholar 

  17. Liu, M.; Ji, J.; Zhang, X.; Zhang, X.; Yang, B.; Deng, F.; Li, Z.; Wang, K.; Yang, Y.; Wei, Y. Self-polymerization of dopamine and polyethyleneimine: Novel fluorescent organic nanoprobes for biological imaging applications. J. Mater. Chem. B 2015, 3, 3476–3482.

    Article  CAS  Google Scholar 

  18. Shi, Y.; Jiang, R.; Liu, M.; Fu, L.; Zeng, G.; Wan, Q.; Mao, L.; Deng, F.; Zhang, X.; Wei, Y. Facile synthesis of polymeric fluorescent organic nanoparticles based on the self-polymerization of dopamine for biological imaging. Mater. Sci. Eng. C-Mater. 2017, 77, 972–977.

    Article  CAS  Google Scholar 

  19. Cao, Q. Y.; Jiang, R.; Liu, M.; Wan, Q.; Xu, D.; Tian, J.; Huang, H.; Wen, Y.; Zhang, X.; Wei, Y. Microwave-assisted multicomponent reactions for rapid synthesis of AIE-active fluorescent polymeric nanoparticles by post-polymerization method. Mater. Sci. Eng. C-Mater. 2017, 80, 578–583.

    Article  CAS  Google Scholar 

  20. Cao, Q.-y.; Jiang, R.; Liu, M.; Wan, Q.; Xu, D.; Tian, J.; Huang, H.; Wen, Y.; Zhang, X.; Wei, Y. Preparation of AIEactive fluorescent polymeric nanoparticles through a catalystfree thiol-yne click reaction for bioimaging applications. Mater. Sci. Eng. C-Mater. 2017, 80, 411–416.

    Article  CAS  Google Scholar 

  21. Huang, H.; Xu, D.; Liu, M.; Jiang, R.; Mao, L.; Huang, Q.; Wan, Q.; Wen, Y.; Zhang, X.; Wei, Y. Direct encapsulation of AIE-active dye with ß cyclodextrin terminated polymers: Selfassembly and biological imaging. Mater. Sci. Eng. C-Mater. 2017, 78, 862–867.

    Article  CAS  Google Scholar 

  22. Jiang, R.; Liu, H.; Liu, M.; Tian, J.; Huang, Q.; Huang, H.; Wen, Y.; Cao, Q. Y.; Zhang, X.; Wei, Y. A facile one-pot Mannich reaction for the construction of fluorescent polymeric nanoparticles with aggregation-induced emission feature and their biological imaging. Mater. Sci. Eng. C-Mater. 2017, 81, 416–421.

    Article  CAS  Google Scholar 

  23. Jiang, R.; Liu, M.; Li, C.; Huang, Q.; Huang, H.; Wan, Q.; Wen, Y.; Cao, Q. Y.; Zhang, X.; Wei, Y. Facile fabrication of luminescent polymeric nanoparticles containing dynamic linkages via a one-pot multicomponent reaction: Synthesis, aggregation-induced emission and biological imaging. Mater. Sci. Eng. C-Mater. 2017, 80, 708–714.

    Article  CAS  Google Scholar 

  24. Tian, J.; Jiang, R.; Gao, P.; Xu, D.; Mao, L.; Zeng, G.; Liu, M.; Deng, F.; Zhang, X.; Wei, Y. Synthesis and cell imaging applications of amphiphilic AIE-active poly(amino acid)s. Mater. Sci. Eng. C-Mater. 2017, 79, 563–569.

    Article  CAS  Google Scholar 

  25. Wan, Q.; Liu, M.; Mao, L.; Jiang, R.; Xu, D.; Huang, H.; Dai, Y.; Deng, F.; Zhang, X.; Wei, Y. Preparation of PEGylated polymeric nanoprobes with aggregation-induced emission feature through the combination of chain transfer free radical polymerization and multicomponent reaction: Self-assembly, characterization and biological imaging applications. Mater. Sci. Eng. C-Mater. 2017, 72, 352–358.

    Article  CAS  Google Scholar 

  26. Huang, L.; Liu, M.; Huang, H.; Wen, Y.; Zhang, X.; Wei, Y. Recent advances and progress on melanin-like materials and their biomedical applications. Biomacromolecules 2018, 19, 1858–1868.

    Article  CAS  PubMed  Google Scholar 

  27. Jiang, R.; Liu, M.; Huang, H.; Mao, L.; Huang, Q.; Wen, Y.; Cao, Q. Y.; Tian, J.; Zhang, X.; Wei, Y. Facile fabrication of organic dyed polymer nanoparticles with aggregation-induced emission using an ultrasound-assisted multicomponent reaction and their biological imaging. J. Colloid Interf. Sci. 2018, 519, 137–144.

    Article  CAS  Google Scholar 

  28. Zhang, X.; Zhang, X.; Yang, B.; Hui, J.; Liu, M.; Liu, W.; Chen, Y.; Wei, Y. PEGylation and cell imaging applications of AIE based fluorescent organic nanoparticles via ring-opening reaction. Polym. Chem. 2014, 5, 689–693.

    Article  Google Scholar 

  29. Zhang, X.; Zhang, X.; Yang, B.; Liu, M.; Liu, W.; Chen, Y.; Wei, Y. Facile fabrication and cell imaging applications of aggregation induced emission dye based fluorescent organic nanoparticles. Polym. Chem. 2013, 4, 4317–4321.

    Article  CAS  Google Scholar 

  30. Zhang, X.; Zhang, X.; Yang, B.; Liu, M.; Liu, W.; Chen, Y.; Wei, Y. Polymerizable aggregation induced emission dye based fluorescent nanoparticles for cell imaging applications. Polym. Chem. 2014, 5, 356–360.

    Article  CAS  Google Scholar 

  31. Zhang, X.; Zhang, X.; Yang, B.; Liu, M.; Liu, W.; Chen, Y.; Wei, Y. Fabrication of aggregation induced emission dye-based fluorescent organic nanoparticles via emulsion polymerization and their cell imaging applications. Polym. Chem. 2014, 5, 399–404.

    Article  CAS  Google Scholar 

  32. Jiang, R.; Liu, M.; Chen, T.; Huang, H.; Huang, Q.; Tian, J.; Wen, Y.; Cao, Q. Y.; Zhang, X.; Wei, Y. Facile construction and biological imaging of cross-linked fluorescent organic nanoparticles with aggregation-induced emission feature through a catalyst-free azide-alkyne click reaction. Dyes Pigments 2018, 148, 52–60.

    Article  CAS  Google Scholar 

  33. Xu, D.; Liu, M.; Zou, H.; Huang, Q.; Huang, H.; Tian, J.; Jiang, R.; Wen, Y.; Zhang, X.; Wei, Y. Fabrication of AIE-active fluorescent organic nanoparticles through one-pot supramolecular polymerization and their biological imaging. J. Taiwan Inst. Chem. E 2017, 78, 455–461.

    Article  CAS  Google Scholar 

  34. Xu, D.; Zeng, S.; Liu, M.; Chen, J.; Huang, H.; Deng, F.; Tian, J.; Wen, Y.; Zhang, X.; Wei, Y. Preparation of PEGylated and biodegradable fluorescent organic nanoparticles with aggregation-induced emission characteristics through direct ring-opening polymerization. J. Taiwan Inst. Chem. E 2018.

    Google Scholar 

  35. Cui, Y.; Song, T.; Yu, J.; Yang, Y.; Wang, Z.; Qian, G. Dye encapsulated metal-organic framework for warm-white LED with high color-rendering index. Adv. Funct. Mater. 2015, 25, 4796–4802.

    Article  CAS  Google Scholar 

  36. Wang, H.; Zhao, E.; Lam, J. W.; Tang, B. Z. AIE luminogens: Emission brightened by aggregation. Mater. Today 2015, 18, 365–377.

    Article  CAS  Google Scholar 

  37. Luo, J.; Xie, Z.; Lam, J. W.; Cheng, L.; Chen, H.; Qiu, C.; Kwok, H. S.; Zhan, X.; Liu, Y.; Zhu, D. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem. Commun. 2001, 1740–1741.

    Google Scholar 

  38. Hong, Y.; Lam, J. W.; Tang, B. Z. Aggregation-induced emission. Chem. Soc. Rev. 2011, 40, 5361–5388.

    Article  CAS  PubMed  Google Scholar 

  39. Hong, Y.; Lam, J. W.; Tang, B. Z. Aggregation-induced emission: Phenomenon, mechanism and applications. Chem. Commun. 2009, 4332–4353.

    Google Scholar 

  40. Mei, J.; Hong, Y.; Lam, J. W.; Qin, A.; Tang, Y.; Tang, B. Z. Aggregation-induced emission: The whole is more brilliant than the parts. Adv. Mater. 2014, 26, 5429–5479.

    Article  CAS  PubMed  Google Scholar 

  41. Mei, J.; Leung, N. L.; Kwok, R. T.; Lam, J. W.; Tang, B. Z. Aggregation-induced emission: Together we shine, united we soar! Chem. Rev. 2015, 115, 11718–11940.

    Article  CAS  PubMed  Google Scholar 

  42. Yuan, W. Z.; Lu, P.; Chen, S.; Lam, J. W.; Wang, Z.; Liu, Y.; Kwok, H. S.; Ma, Y.; Tang, B. Z. Changing the behavior of chromophores from aggregation-caused quenching to aggregation-induced emission: Development of highly efficient light emitters in the solid state. Adv. Mater. 2010, 22, 2159–2163.

    Article  CAS  PubMed  Google Scholar 

  43. Wang, M.; Zhang, G.; Zhang, D.; Zhu, D.; Tang, B. Z. Fluorescent bio/chemosensors based on silole and tetraphenylethene luminogens with aggregation-induced emission feature. J. Mater. Chem. 2010, 20, 1858–1867.

    Article  CAS  Google Scholar 

  44. Zhan, C.; You, X.; Zhang, G.; Zhang, D. Bio-/chemosensors and imaging with aggregation-induced emission luminogens. Chem. Rec. 2016, 16, 2142–2160.

    Article  CAS  PubMed  Google Scholar 

  45. Kwok, R. T.; Leung, C. W.; Lam, J. W.; Tang, B. Z. Biosensing by luminogens with aggregation-induced emission characteristics. Chem. Soc. Rev. 2015, 44, 4228–4238.

    Article  CAS  PubMed  Google Scholar 

  46. Zhang, X.; Zhang, X.; Tao, L.; Chi, Z.; Xu, J.; Wei, Y. Aggregation induced emission-based fluorescent nanoparticles: Fabrication methodologies and biomedical applications. J. Mater. Chem. B 2014, 2, 4398–4414.

    Article  CAS  Google Scholar 

  47. Zhang, X.; Wang, K.; Liu, M.; Zhang, X.; Tao, L.; Chen, Y.; Wei, Y. Polymeric AIE-based nanoprobes for biomedical applications: Recent advances and perspectives. Nanoscale 2015, 7, 11486–11508.

    Article  CAS  PubMed  Google Scholar 

  48. Yi, X.; Li, J.; Zhu, Z.; Liu, Q.; Xue, Q.; Ding, D. In vivo cancer research using aggregation-induced emission organic nanoparticles. Drug Discov. Today 2017, 22, 1412–1420.

    Article  CAS  PubMed  Google Scholar 

  49. Wan, Q.; Huang, Q.; Liu, M.; Xu, D.; Huang, H.; Zhang, X.; Wei, Y. Aggregation-induced emission active luminescent polymeric nanoparticles: Non-covalent fabrication methodologies and biomedical applications. Appl. Mater. Today 2017, 9, 145–160.

    Article  Google Scholar 

  50. Ding, D.; Li, K.; Liu, B.; Tang, B. Z. Bioprobes based on AIE fluorogens. Acc. Chem. Res. 2013, 46, 2441–2453.

    Article  CAS  PubMed  Google Scholar 

  51. Sun, X.; Zebibula, A.; Dong, X.; Zhang, G.; Zhang, D.; Qian, J.; He, S. Aggregation-induced emission nanoparticles encapsulated with PEGylated nano graphene oxide and their applications in two-photon fluorescence bioimaging and photodynamic therapy in vitro and in vivo. ACS Appl. Mater. Interfaces 2018, 10, 25037–25046.

    Article  CAS  PubMed  Google Scholar 

  52. Li, D.; Yu, J. AIEgens-functionalized inorganic-organic hybrid materials: Fabrications and applications. Small 2016, 12, 6478–6494.

    Article  CAS  PubMed  Google Scholar 

  53. Zhang, M.; Feng, G.; Song, Z.; Zhou, Y. P.; Chao, H. Y.; Yuan, D.; Tan, T. T. Y.; Guo, Z.; Hu, Z.; Tang, B. Z.; Liu, B.; Zhao, D. Two-dimensional metal-organic framework with wide channels and responsive turn-on fluorescence for the chemical sensing of volatile organic compounds. J. Am. Chem. Soc. 2014, 136, 7241–7244.

    Article  CAS  PubMed  Google Scholar 

  54. Li, D.; Yu, J.; Xu, R. Mesoporous silica functionalized with an AIE luminogen for drug delivery. Chem. Commun. 2011, 47, 11077–11079.

    Article  CAS  Google Scholar 

  55. Montalti, M.; Prodi, L.; Rampazzo, E.; Zaccheroni, N. Dyedoped silica nanoparticles as luminescent organized systems for nanomedicine. Chem. Soc. Rev. 2014, 43, 4243–4268.

    Article  CAS  PubMed  Google Scholar 

  56. Hao, X.; Zhou, M.; Zhang, X.; Yu, J.; Jie, J.; Yu, C.; Zhang, X. Highly luminescent and photostable core-shell dye nanoparticles for high efficiency bioimaging. Chem. Commun. 2014, 50, 737–739.

    Article  CAS  Google Scholar 

  57. Wang, Y. F.; Che, J.; Zheng, Y. C.; Zhao, Y. Y.; Chen, F.; Jin, S. B.; Gong, N. Q.; Xu, J.; Hu, Z. B.; Liang, X. J. Multi-stable fluorescent silica nanoparticles obtained from in situ doping with aggregation-induced emission molecules. J. Mater. Chem. B 2015, 3, 8775–8781.

    Article  CAS  Google Scholar 

  58. Zhang, X.; Zhang, X.; Yang, B.; Liu, L.; Hui, J.; Liu, M.; Chen, Y.; Wei, Y. Aggregation-induced emission dye based luminescent silica nanoparticles: Facile preparation, biocompatibility evaluation and cell imaging applications. RSC Adv. 2014, 4, 10060–10066.

    Article  CAS  Google Scholar 

  59. Kim, S.; Pudavar, H. E.; Bonoiu, A.; Prasad, P. N. Aggregation-enhanced fluorescence in organically modified silica nanoparticles: A novel approach toward high-signal-output nanoprobes for two-photon fluorescence bioimaging. Adv. Mater. 2007, 19, 3791–3795.

    Article  CAS  Google Scholar 

  60. Kim, S.; Ohulchanskyy, T. Y.; Pudavar, H. E.; Pandey, R. K.; Prasad, P. N. Organically modified silica nanoparticles co-encapsulating photosensitizing drug and aggregation-enhanced two-photon absorbing fluorescent dye aggregates for twophoton photodynamic therapy. J. Am. Chem. Soc. 2007, 129, 2669–2675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Faisal, M.; Hong, Y.; Liu, J.; Yu, Y.; Lam, J. W.; Qin, A.; Lu, P.; Tang, B. Z. Fabrication of fluorescent silica nanoparticles hybridized with AIE luminogens and exploration of their applications as nanobiosensors in intracellular imaging. Chem. Eur. J. 2010, 16, 4266–4272.

    Article  CAS  PubMed  Google Scholar 

  62. Wang, Y.; Zhao, Q.; Han, N.; Bai, L.; Li, J.; Liu, J.; Che, E.; Hu, L.; Zhang, Q.; Jiang, T. Mesoporous silica nanoparticles in drug delivery and biomedical applications. Nanomed. Nanotechnol. Biol. Med. 2015, 11, 313–327.

    Article  CAS  Google Scholar 

  63. Zhang, X.; Zhang, X.; Wang, S.; Liu, M.; Zhang, Y.; Tao, L.; Wei, Y. Facile incorporation of aggregation-induced emission materials into mesoporous silica nanoparticles for intracellular imaging and cancer therapy. ACS Appl. Mater. Interfaces 2013, 5, 1943–1947.

    Article  CAS  PubMed  Google Scholar 

  64. Yan, D.; Lu, J.; Ma, J.; Wei, M.; Li, S.; Evans, D. G.; Duan, X. Near-infrared absorption and polarized luminescent ultrathin films based on sulfonated cyanines and layered double hydroxide. J. Phys. Chem. C 2011, 115, 7939–7946.

    Article  CAS  Google Scholar 

  65. Li, D.; Miao, C.; Wang, X.; Yu, X.; Yu, J.; Xu, R. AIE cation functionalized layered zirconium phosphate nanoplatelets: Ionexchange intercalation and cell imaging. Chem. Commun. 2013, 49, 9549–9551.

    Article  CAS  Google Scholar 

  66. Li, Z.; Lu, J.; Qin, Y.; Li, S.; Qin, S. Two dimensional restriction-induced luminescence of tetraphenyl ethylene within the layered double hydroxide ultrathin films and its fluorescence resonance energy transfer. J. Mater. Chem. C 2013, 1, 5944–5952.

    Article  CAS  Google Scholar 

  67. Guan, W.; Lu, J.; Zhou, W.; Lu, C. Aggregation-induced emission molecules in layered matrices for two-color luminescence films. Chem. Commun. 2014, 50, 11895–11898.

    Article  CAS  Google Scholar 

  68. Guan, W.; Wang, S.; Lu, C.; Tang, B. Z. Fluorescence microscopy as an alternative to electron microscopy for microscale dispersion evaluation of organic-inorganic composites. Nat. Commun. 2016, 7, 11811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhong, J.; Li, Z.; Guan, W.; Lu, C. Cation-p interaction triggered-fluorescence of clay fillers in polymer composites for quantification of three-dimensional macrodispersion. Anal. Chem. 2017, 89, 12472–12479.

    Article  CAS  PubMed  Google Scholar 

  70. Tian, R.; Zhong, J.; Lu, C.; Duan, X. Hydroxyl-triggered fluorescence for location of inorganic materials in polymer-matrix composites. Chem. Sci. 2018, 9, 218–222.

    Article  CAS  PubMed  Google Scholar 

  71. Ferraz, M.; Monteiro, F.; Manuel, C. Hydroxyapatite nanoparticles: A review of preparation methodologies. J. Appl. Biomater. Biom. 2004, 2, 74–80.

    CAS  Google Scholar 

  72. Prakasam, M.; Locs, J.; Salma-Ancane, K.; Loca, D.; Largeteau, A.; Berzina-Cimdina, L. Fabrication, properties and applications of dense hydroxyapatite: A review. J. Func. Biomater. 2015, 6, 1099–1140.

    Article  CAS  Google Scholar 

  73. Haider, A.; Haider, S.; Han, S. S.; Kang, I. K. Recent advances in the synthesis, functionalization and biomedical applications of hydroxyapatite: A review. RSC Adv. 2017, 7, 7442–7458.

    Article  CAS  Google Scholar 

  74. Liu, M.; Liu, H.; Sun, S.; Li, X.; Zhou, Y.; Hou, Z.; Lin, J. Multifunctional hydroxyapatite/Na(Y/Gd)F4: Yb3+, Er3+ composite fibers for drug delivery and dual modal imaging. Langmuir 2014, 30, 1176–1182.

    Article  CAS  PubMed  Google Scholar 

  75. Wang, D.; Li, D. AIEgens-functionalised hydroxyapatite rods for explosive detection in water and pH-triggered drug delivery. Inorg. Chem. Commun. 2018, 91, 105–107.

    Article  CAS  Google Scholar 

  76. Li, D.; Liang, Z.; Chen, J.; Yu, J.; Xu, R. AIE luminogen bridged hollow hydroxyapatite nanocapsules for drug delivery. Dalton Trans. 2013, 42, 9877–9883.

    Article  CAS  PubMed  Google Scholar 

  77. Jiang, R.; Liu, M.; Huang, H.; Huang, L.; Huang, Q.; Wen, Y.; Cao, Q. Y.; Tian, J.; Zhang, X.; Wei, Y. A novel self-catalyzed photoATRP strategy for preparation of fluorescent hydroxyapatite nanoparticles and their biological imaging. Appl. Surf. Sci. 2018, 434, 1129–1136.

    Article  CAS  Google Scholar 

  78. Kitagawa, S. Metal-organic frameworks (MOFs). Chem. Soc. Rev. 2014, 43, 5415–5418.

    Article  PubMed  Google Scholar 

  79. Cui, Y.; Yue, Y.; Qian, G.; Chen, B. Luminescent functional metal-organic frameworks. Chem. Rev. 2011, 112, 1126–1162.

    Article  CAS  PubMed  Google Scholar 

  80. Hu, Z.; Deibert, B. J.; Li, J. Luminescent metal-organic frameworks for chemical sensing and explosive detection. Chem. Soc. Rev. 2014, 43, 5815–5840.

    Article  CAS  PubMed  Google Scholar 

  81. Li, Q.; Wu, X.; Huang, X.; Deng, Y.; Chen, N.; Jiang, D.; Zhao, L.; Lin, Z.; Zhao, Y. Tailoring the fluorescence of AIEactive metal-organic frameworks for aqueous sensing of metal ions. ACS Appl. Mater. Interfaces 2018, 10, 3801–3809.

    Article  CAS  PubMed  Google Scholar 

  82. Wu, X. X.; Fu, H. R.; Han, M. L.; Zhou, Z.; Ma, L. F. Tetraphenylethylene immobilized metal-organic frameworks: Highly sensitive fluorescent sensor for the detection of Cr2 and nitroaromatic explosives. Cryst. Growth Des. 2017, 17, 6041–6048.

    Article  CAS  Google Scholar 

  83. Xie, M. H.; Cai, W.; Chen, X.; Guan, R. F.; Wang, L. M.; Hou, G. H.; Xi, X. G.; Zhang, Q. F.; Yang, X. L.; Shao, R. Novel CO2 fluorescence turn-on quantification based on a dynamic AIE-active metal-organic Framework. ACS Appl. Mater. Interfaces 2018, 10, 2868–2873.

    Article  CAS  PubMed  Google Scholar 

  84. Liu, X. G.; Wang, H.; Chen, B.; Zou, Y.; Gu, Z. G.; Zhao, Z.; Shen, L. A luminescent metal-organic framework constructed using a tetraphenylethene-based ligand for sensing volatile organic compounds. Chem. Commun. 2015, 51, 1677–1680.

    Article  CAS  Google Scholar 

  85. Shustova, N. B.; Ong, T. C.; Cozzolino, A. F.; Michaelis, V. K.; Griffin, R. G.; Dinca, M. Phenyl ring dynamics in a tetraphenylethylene-bridged metal-organic framework: Implications for the mechanism of aggregation-induced emission. J. Am. Chem. Soc. 2012, 134, 15061–15070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Shustova, N. B.; McCarthy, B. D.; Dinca, M. Turn-on fluorescence in tetraphenylethylene-based metal-organic frameworks: An alternative to aggregation-induced emission. J. Am. Chem. Soc. 2011, 133, 20126–20129.

    Article  CAS  PubMed  Google Scholar 

  87. Wei, Z.; Gu, Z. Y.; Arvapally, R. K.; Chen, Y. P.; McDougald Jr., R. N.; Ivy, J. F.; Yakovenko, A. A.; Feng, D.; Omary, M. A.; Zhou, H. C. Rigidifying fluorescent linkers by metal-organic framework formation for fluorescence blue shift and quantum yield enhancement. J. Am. Chem. Soc. 2014, 136, 8269–8276.

    Article  CAS  PubMed  Google Scholar 

  88. Guo, Y.; Feng, X.; Han, T.; Wang, S.; Lin, Z.; Dong, Y.; Wang, B. Tuning the luminescence of metal-organic frameworks for detection of energetic heterocyclic compounds. J. Am. Chem. Soc. 2014, 136, 15485–15488.

    Article  CAS  PubMed  Google Scholar 

  89. Jiang, Y.; Sun, L.; Du, J.; Liu, Y.; Shi, H.; Liang, Z.; Li, J. Multifunctional zinc metal-organic framework based on designed H4TCPP ligand with aggregation-induced emission effect: CO2 adsorption, luminescence, and sensing property. Cryst. Growth Des. 2017, 17, 2090–2096.

    Article  CAS  Google Scholar 

  90. He, C.; Liu, D.; Lin, W. Nanomedicine applications of hybrid nanomaterials built from metal-ligand coordination bonds: Nanoscale metal-organic frameworks and nanoscale coordination polymers. Chem. Rev. 2015, 115, 11079–11108.

    Article  CAS  PubMed  Google Scholar 

  91. Taylor-Pashow, K. M.; Della Rocca, J.; Huxford, R. C.; Lin, W. Hybrid nanomaterials for biomedical applications. Chem. Commun. 2010, 46, 5832–5849.

    Article  CAS  Google Scholar 

  92. Biju, V. Chemical modifications and bioconjugate reactions of nanomaterials for sensing, imaging, drug delivery and therapy. Chem. Soc. Rev. 2014, 43, 744–764.

    Article  CAS  PubMed  Google Scholar 

  93. Geng, J.; Goh, C. C.; Qin, W.; Liu, R.; Tomczak, N.; Ng, L. G.; Tang, B. Z.; Liu, B. Silica shelled and block copolymer encapsulated red-emissive AIE nanoparticles with 50% quantum yield for two-photon excited vascular imaging. Chem. Commun. 2015, 51, 13416–13419.

    Article  CAS  Google Scholar 

  94. Mao, L.; Liu, M.; Xu, D.; Wan, Q.; Huang, Q.; Jiang, R.; Shi, Y.; Deng, F.; Zhang, X.; Wei, Y. Synthesis, surface modification and biological imaging of aggregation-induced emission (AIE) dye doped silica nanoparticles. Appl. Surf. Sci. 2017, 403, 396–402.

    Article  CAS  Google Scholar 

  95. Chen, J.; Liu, M.; Huang, Q.; Huang, L.; Huang, H.; Deng, F.; Wen, Y.; Tian, J.; Zhang, X.; Wei, Y. Facile preparation of fluorescent nanodiamond-based polymer composites through a metal-free photo-initiated RAFT process and their cellular imaging. Chem. Eng. J. 2017, 337, 82–89.

    Article  CAS  Google Scholar 

  96. Mao, L.; Liu, X.; Liu, M.; Huang, L.; Xu, D.; Jiang, R.; Huang, Q.; Wen, Y.; Zhang, X.; Wei, Y. Surface grafting of zwitterionic polymers onto dye doped AIE-active luminescent silica nanoparticles through surface-initiated ATRP for biological imaging applications. Appl. Surf. Sci. 2017, 419, 188–196.

    Article  CAS  Google Scholar 

  97. Wang, X.; Morales, A. R.; Urakami, T.; Zhang, L.; Bondar, M. V.; Komatsu, M.; Belfield, K. D. Folate receptor-targeted aggregation-enhanced near-IR emitting silica nanoprobe for one-photon in vivo and two-photon ex vivo fluorescence bioimaging. Bioconjugate Chem. 2011, 22, 1438–1450.

    Article  CAS  Google Scholar 

  98. Li, M.; Lam, J. W.; Mahtab, F.; Chen, S.; Zhang, W.; Hong, Y.; Xiong, J.; Zheng, Q.; Tang, B. Z. Biotin-decorated fluorescent silica nanoparticles with aggregation-induced emission characteristics: Fabrication, cytotoxicity and biological applications. J. Mater. Chem. B 2013, 1, 676–684.

    Article  CAS  Google Scholar 

  99. Wang, X.; Song, P.; Peng, L.; Tong, A.; Xiang, Y. Aggregation-induced emission luminogen-embedded silica nanoparticles containing DNA aptamers for targeted cell imaging. ACS Appl. Mater. Interfaces 2015, 8, 609–616.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 21564006, 21561022, 21644014, 21788102, and 21865016).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao-Yong Zhang or Yen Wei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, LC., Zhang, XY. & Wei, Y. Recent Advances and Progress for the Fabrication and Surface Modification of AIE-active Organic-inorganic Luminescent Composites. Chin J Polym Sci 37, 340–351 (2019). https://doi.org/10.1007/s10118-019-2208-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-019-2208-1

Keywords

Navigation