Skip to main content
Log in

Selective and Rapid Optical Detection of Citalopram Using a Fluorescent Probe Based on Carbon Quantum Dots Embedded in Silica Molecularly Imprinted Polymer

  • Research
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

In this study, a citalopram optical nano-sensor was developed. Citalopram is a well-known antidepressant drug that reduces the reuptake of serotonin in neurons as a result, serotonin neurotransmission, the primary response to antidepressant treatments, increases in many parts of the brain. This study introduces a carbon quantum dots (CQDs)-based optical nanosensor for rapid detection of citalopram. This fluorescent nanosensor was made through the polymerization of tetraethyl orthosilicate in the presence of CQDs as the fluorescent materials and citalopram as the template molecule. Following the polymerization, the templated molecules were washed and removed from the structure, and the matrix of the polymer was left with some cavities that resembled citalopram in terms of size and shape. The final structure which is used as a chemical nanosensor, is named carbon quantum dots embedded silica molecularly imprinted polymer (CQDs-SMIP). The materials used in designing nano-sensors were characterized using FTIR, UV/Vis, and fluorescence spectroscopy, as well as high-resolution transmission electron microscopy (HR-TEM), and field emission scanning electron microscopy (FESEM). CQDs-SMIP showed a strong fluorescence emission at 420 nm in the absence of the template molecule. The fluorescence intensity of the nanosensor decreased in the presence of citalopram. The correlation between the extent of the fluorescence quenching and the concentration of citalopram provided the nano-sensor signal. The nano-sensor was used to measure citalopram in complex matrices such as human plasma and urine samples with remarkable selectivity and sensitivity. The detection limit of 10.3 µg.L-1 over a linear range of 100 to 700 µg.L-1, and RSD of 3.15% was obtained. This nano-sensor was applied to analyze of citalopram in plasma and human urine samples with remarkable results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Aguilar-Martinez IS et al (2020) Synergistic antidepressant-like effect of capsaicin and citalopram reduces the side effects of citalopram on anxiety and working memory in rats. Psychopharmacology 237:2173–2185. https://doi.org/10.1007/s00213-020-05528-6

    Article  CAS  PubMed  Google Scholar 

  2. Li S et al (2022) Comparative effectiveness of transcutaneous auricular vagus nerve stimulation vs citalopram for major depressive disorder: a randomized trial. Neuromodulation: Technol Neural Interface 25(3):450–460. https://doi.org/10.1016/j.neurom.2021.10.021

    Article  Google Scholar 

  3. Anderson LL et al (2021) Citalopram and cannabidiol: in vitro and in vivo evidence of pharmacokinetic interactions relevant to the treatment of anxiety disorders in young people. J Clin Psychopharmacol 41(5):525–533. https://doi.org/10.1097/JCP.0000000000001427

    Article  CAS  PubMed  Google Scholar 

  4. Reddy AP et al (2021) Selective serotonin reuptake inhibitor citalopram ameliorates cognitive decline and protects against amyloid beta-induced mitochondrial dynamics, biogenesis, autophagy, mitophagy and synaptic toxicities in a mouse model of Alzheimer’s disease. Hum Mol Genet 30(9):789–810. https://doi.org/10.1093/hmg/ddab091/6206635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Geryk R et al (2013) HPLC method for chiral separation and quantification of antidepressant citalopram and its precursor citadiol. Chromatographia 76:483–489. https://doi.org/10.1007/s10337-013-2426-6

    Article  CAS  Google Scholar 

  6. Klöbl M et al (2020) Predicting antidepressant citalopram treatment response via changes in brain functional connectivity after acute intravenous challenge. Front Comput Neurosci 14:554186. https://doi.org/10.3389/fncom.2020.554186

    Article  PubMed  PubMed Central  Google Scholar 

  7. Higgins A, Nash M, Lynch AM (2010) Antidepressant-associated sexual dysfunction: impact, effects, and treatment. Drug Healthc Patient Saf 2:p141. https://doi.org/10.2147/DHPS.S7634

    Article  Google Scholar 

  8. Nouws HP, Delerue-Matos C, and A.A (2006) Barros, Electrochemical determination of citalopram by adsorptive stripping voltammetry–determination in pharmaceutical products. Anal Lett 39(9):1907–1915. https://doi.org/10.1080/00032710600721712

    Article  CAS  Google Scholar 

  9. Tadić S, Nikolić K, Agbaba D (2012) Development and optimization of an HPLC analysis of citalopram and its four nonchiral impurities using experimental design methodology. J AOAC Int 95(3):733–743. https://doi.org/10.5740/jaoacint.SGE_Tadic

    Article  CAS  PubMed  Google Scholar 

  10. Madej M et al (2021) A voltammetric sensor based on mixed proton-electron conducting composite including metal-organic framework JUK-2 for determination of citalopram. Microchim Acta 188(6):184. https://doi.org/10.1007/s00604-021-04835-9

    Article  CAS  Google Scholar 

  11. Baccarin M, Cervini P, Cavalheiro ETG (2018) Comparative performances of a bare graphite-polyurethane composite electrode unmodified and modified with graphene and carbon nanotubes in the electrochemical determination of escitalopram. Talanta 178:1024–1032. https://doi.org/10.1016/j.talanta.2017.08.094

    Article  CAS  PubMed  Google Scholar 

  12. Świądro M et al (2020) Development of a new method for drug detection based on a combination of the dried blood spot method and capillary electrophoresis. J Chromatogr B 1157:122339. https://doi.org/10.1016/j.jchromb.2020.122339

    Article  CAS  Google Scholar 

  13. Abdel-Raoof AM et al (2020) Simultaneous determination of citalopram and tadalafil by the second derivative synchronous fluorescence method in biological fluids; application of box–behnken optimization design. Luminescence 36(1):57–65. https://doi.org/10.1002/bio.3913

    Article  CAS  PubMed  Google Scholar 

  14. Das RS and Y (2012) Spectrofluorometric analysis of new-generation antidepressant drugs in pharmaceutical formulations, human urine, and plasma samples. Spectroscopy: An International Journal 27:59–71. https://doi.org/10.1155/2012/567207

    Article  CAS  Google Scholar 

  15. Azmi SNH et al (2015) Utility of eosin Y as a complexing reagent for the determination of citalopram hydrobromide in commercial dosage forms by fluorescence spectrophotometry. Luminescence 30(8):1352–1359. https://doi.org/10.1002/bio.2905

    Article  CAS  PubMed  Google Scholar 

  16. Moffat AC et al (2004) Clarke’s analysis of drugs and poisons in pharmaceuticals, body fluids and postmortem material, 3rd edn. Pharmaceutical Press, London. Lormetazepam

    Google Scholar 

  17. Liu B et al (2019) Semiconductor quantum dots in tumor research. J Lumin 209:61–68. https://doi.org/10.1016/j.jlumin.2019.01.011

    Article  CAS  Google Scholar 

  18. Amjadi M, Jalili R (2018) A molecularly imprinted dual-emission carbon dot-quantum dot mesoporous hybrid for ratiometric determination of anti-inflammatory drug celecoxib. Spectrochim Acta Part A Mol Biomol Spectrosc 191:345–351. https://doi.org/10.1016/j.saa.2017.10.026

    Article  CAS  Google Scholar 

  19. Hongren L, Feng L, Aimin D (2015) A solvothermal method to synthesize fluorescent carbon nanoparticles and application to photocatalysis and electrocatalysis. Luminescence 30(6):740–744. https://doi.org/10.1002/bio.2813

    Article  CAS  PubMed  Google Scholar 

  20. Hu Q et al (2023) Silicon Doped Carbon Dots as a new ratiometric fluorescence probe for Proanthocyanidins Assay based on the Redox reaction between cr (VI) and Proanthocyanidins. J Fluoresc 33:849–858. https://doi.org/10.1007/s10895-022-03131-w

    Article  CAS  PubMed  Google Scholar 

  21. Li G-X et al (2020) Synthesis of quantum dots based on microfluidic technology. Curr Opin Chem Eng 29:34–41. https://doi.org/10.1016/j.coche.2020.02.005

    Article  Google Scholar 

  22. Wei G et al (2012) The synthesis of highly water-dispersible and targeted CdS quantum dots and it is used for bioimaging by confocal microscopy. Spectrochim Acta Part A Mol Biomol Spectrosc 85(1):288–292. https://doi.org/10.1016/j.saa.2011.10.011

    Article  CAS  Google Scholar 

  23. Kateshiya MR et al (2022) ) advances in ultra-small fluorescence nanoprobes for detection of metal ions, drugs, pesticides and biomarkers. J Fluoresc 33:775–798. https://doi.org/10.1007/s10895-022-03115-w. (

    Article  CAS  PubMed  Google Scholar 

  24. Li M et al (2019) Review of carbon and graphene quantum dots for sensing. ACS Sens 4(7):1732–1748. https://doi.org/10.1021/acssensors.9b00514

    Article  CAS  PubMed  Google Scholar 

  25. Wang M et al (2019) A magnetic and carbon dot based molecularly imprinted composite for fluorometric detection of 2, 4, 6-trinitrophenol. Microchim Acta 186(2):1–11. https://doi.org/10.1007/s00604-018-3200-0

    Article  CAS  Google Scholar 

  26. Ahmadi H, Faridbod F, Mehrzad-Samarin M (2019) Entacapone detection by a GOQDs-molecularly imprinted silica fluorescent chemical nanosensor. Anal Bioanal Chem 411:1075–1084. https://doi.org/10.1007/s00216-018-1534-4

    Article  CAS  PubMed  Google Scholar 

  27. Mabrouk M et al (2020) Chitosan-based molecular imprinted polymer for extraction and spectrophotometric determination of ketorolac in human plasma. Spectrochim Acta Part A Mol Biomol Spectrosc 241:118668. https://doi.org/10.1016/j.saa.2020.118668

    Article  CAS  Google Scholar 

  28. Takeuchi T et al (2016) Molecularly imprinted tailor-made functional polymer receptors for highly sensitive and selective separation and detection of target molecules. Chromatography 37(2):43–64. https://doi.org/10.15583/jpchrom.2016.007

    Article  CAS  Google Scholar 

  29. Gan T et al (2018) Detection of theophylline using molecularly imprinted mesoporous silica spheres. Food Chem 268:1–8. https://doi.org/10.1016/j.foodchem.2018.06.058

    Article  CAS  PubMed  Google Scholar 

  30. Piloto AM et al (2018) Plastic antibodies tailored on quantum dots for an optical detection of myoglobin down to the femtomolar range. Sci Rep 8(1):1–11. https://doi.org/10.1038/s41598-018-23271-z

    Article  CAS  Google Scholar 

  31. Zhou T, Halder A, Sun Y (2018) Fluorescent nanosensor based on molecularly imprinted polymers coated on graphene quantum dots for fast detection of antibiotics. Biosensors 8(3):82. https://doi.org/10.3390/bios8030082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dong Y et al (2012) Polyamine-functionalized carbon quantum dots for chemical sensing. Carbon 50(8):2810–2815. https://doi.org/10.1016/j.carbon.2012.02.046

    Article  CAS  Google Scholar 

  33. Wang W et al (2023) Novel green fluorescent probe stem from carbon quantum dots for specific recognition of tyrosinase in serum and living cells. J Fluoresc 33(2):739–750. https://doi.org/10.1007/s10895-022-03101-2

    Article  CAS  PubMed  Google Scholar 

  34. Amiri A, Faridbod F, Zoughi S (2021) An optical nanosensor fabricated by carbon dots embedded in silica molecularly imprinted polymer for sensitive detection of ceftazidime antibiotic. J Photochem Photobiol A 408:113111. https://doi.org/10.1016/j.jphotochem.2020.113111

    Article  CAS  Google Scholar 

  35. Zoughi S et al (2021) Detection of tartrazine in fake saffron containing products by a sensitive optical nanosensor. Food Chem 350:129197. https://doi.org/10.1016/j.foodchem.2021.129197

    Article  CAS  PubMed  Google Scholar 

  36. Chullasat K et al (2018) A facile optosensing protocol based on molecularly imprinted polymer coated on CdTe quantum dots for highly sensitive and selective amoxicillin detection. Sens Actuators B 254:255–263. https://doi.org/10.1016/j.snb.2017.07.062

    Article  CAS  Google Scholar 

  37. Hou J et al (2016) Rapid microwave-assisted synthesis of molecularly imprinted polymers on carbon quantum dots for fluorescent sensing of tetracycline in milk. Talanta 146:34–40. https://doi.org/10.1016/j.talanta.2015.08.024

    Article  CAS  PubMed  Google Scholar 

  38. Xu S et al (2013) Dummy molecularly imprinted polymers-capped CdTe quantum dots for the fluorescent sensing of 2, 4, 6-trinitrotoluene. ACS Appl Mater Interfaces 5(16):8146–8154. https://doi.org/10.1021/am4022076

    Article  CAS  PubMed  Google Scholar 

  39. Wang H-F et al (2009) Surface Molecular Imprinting on Mn-Doped ZnS Quantum Dots for Room-Temperature Phosphorescence Optosensing of Pentachlorophenol in Water. Anal Chem 81(4):1615–1621. https://doi.org/10.1021/ac802375a

    Article  CAS  PubMed  Google Scholar 

  40. Liu H et al (2020) Fabrication of carbon dots@restricted access molecularly imprinted polymers for selective detection of metronidazole in serum. Talanta 209:120508. https://doi.org/10.1016/j.talanta.2019.120508

    Article  CAS  PubMed  Google Scholar 

  41. Karimi-Harandi M-H et al (2022) Simultaneous determination of citalopram and selegiline using an efficient electrochemical sensor based on ZIF-8 decorated with RGO and g-C3N4 in real samples. Anal Chim Acta 1203:339662. https://doi.org/10.1016/j.aca.2022.339662

    Article  CAS  PubMed  Google Scholar 

  42. Ghaedi H et al (2016) Construction of novel sensitive electrochemical sensor for electro-oxidation and determination of citalopram based on zinc oxide nanoparticles and multi-walled carbon nanotubes. Mater Sci Engineering: C 59:847–854. https://doi.org/10.1016/j.msec.2015.10.088

    Article  CAS  Google Scholar 

  43. Khan MN et al (2014) A validated silver-nanoparticle‐enhanced chemiluminescence method for the determination of citalopram in pharmaceutical preparations and human plasma. Luminescence 29(3):266–274. https://doi.org/10.1002/bio.2539

    Article  CAS  PubMed  Google Scholar 

  44. Khan MN et al (2013) A validated Spectrofluorimetric Method for the determination of Citalopram in Bulk and Pharmaceutical Preparations based on the measurement of the silver nanoparticles-enhanced fluorescence of Citalopram/Terbium Complexes. J Fluoresc 23(1):161–169. https://doi.org/10.1007/s10895-012-1129-y

    Article  CAS  PubMed  Google Scholar 

  45. Rebelo P et al (2022) Computational modelling and sustainable synthesis of a highly selective electrochemical MIP-based sensor for citalopram detection. Molecules 27:3315. https://doi.org/10.3390/molecules27103315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Thanks to the University of Tehran for financially supporting this work.

Funding

The Research Council of the University of Tehran supported this project.

Author information

Authors and Affiliations

Authors

Contributions

Amir Amiri and Sheida Zoughi did experimental tests. Amir Amiri and Farnoush Faridbod wrote the main manuscript text. Sheida Zoughi and Amir Amiri prepared all the figures. All authors reviewed the manuscript.

Corresponding author

Correspondence to Farnoush Faridbod.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amiri, A., Faridbod, F. & Zoughi, S. Selective and Rapid Optical Detection of Citalopram Using a Fluorescent Probe Based on Carbon Quantum Dots Embedded in Silica Molecularly Imprinted Polymer. J Fluoresc 34, 1171–1181 (2024). https://doi.org/10.1007/s10895-023-03323-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-023-03323-y

Keywords

Navigation