Skip to main content
Log in

Antibacterial Activity of CdTe/ZnS Quantum Dot-β Lactum Antibiotic Conjugates

  • RESEARCH
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

β-Lactum antibiotics are broad class of antibiotics which kills bacteria by inhibiting the formation of peptidoglycan that constitutes the bacterial cell wall. The resistance that develops in bacteria for antibiotics led the scientific world to think about the future aspects for modifying the way through which antibiotics are acted on the bacteria and become lethal for them. In this consequence, the potential of latest marketed antibiotics e.g. Amoxiciline (I), ceftazidim (II) have been evaluated after being conjugated with quantum dots. The surface of quantum dots has been conjugated with antibiotics by carbodiimide coupling with the help of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS) as conjugating agent between antibiotic and functionalized quantum dots. The antibacterial properties of QD-conjugated antibiotics have been determined by disc diffusion assay. The potency of QD-conjugated antibiotics has been estimated by determining their MIC50 for the selected strain of Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria. Minimum inhibitory concentration study, minimum bactericidal concentration and growth pattern analysis revealed that QD-antibiotic conjugates showed slightly more prospective than pure native antibiotics against both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

All the data and materials from this manuscript will be made available on request.

References

  1. Imming P, Klar B, Dix D (2000) Hydrolytic stability versus ring size in lactams: Implications for the development of lactam antibiotics and other serine protease inhibitors. J Med Chem 43:4328–4331

    Article  CAS  PubMed  Google Scholar 

  2. Taggi AE, Hafez AM, Wack H, Young B, Drury WJ, Lectka T (2000) Catalytic, asymmetric synthesis of β-lactams. J Am Chem Soc 122:7831–7832

    Article  CAS  Google Scholar 

  3. Garrity JD, Bennett B, Crowder MW (2005) Direct evidence that the reaction intermediate of metallo-β-lactamase L1 is metal bound. Biochem 44:1078–87

    Article  CAS  Google Scholar 

  4. Farina V, Hauck SI, Firestone RA (1996) Synthesis of cephems bearing olefinic sulfoxide side chains as potential β-lactamase inhibitors. Bioorg Med Chem Lett 6:1613–1618

    Article  CAS  Google Scholar 

  5. Liu YC, Huang WK, Huang TS, Kunin CM (1999) Detection of antimicrobial activity in urine for epidemiologic studies of antibiotic use. J Clinical Epidem 52:539–545

    Article  CAS  Google Scholar 

  6. Zhang HZ, Hackbarth CJ, Chansky KM, Chambers HF (2001) A proteolytic transmembrane signaling pathway and resistance to β-lactams in staphylococci. Science 291:1962–1965

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Neu HC (1992) The crisis in antibiotic resistance. Science 257:1064–1073

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Helena B, Andrea L, Sylvia J, Wolfgang MP, Janka K, Peter M, Milan K (1998) Study of β-lactam resistance in ceftazidime-resistant clinical isolates of Enterobacteriaceae. Int J Antimicrob Agents 10:135–141

    Article  Google Scholar 

  9. Pitout JD, Sanders CC, Sanders WE Jr (1997) Antimicrobial resistance with focus on β-lactam resistance in gram-negative bacilli. Am J Med 103:51–59

    Article  CAS  PubMed  Google Scholar 

  10. Craig WA (1996) Antimicrobial resistance issues of the future. Diagn Microbiol Infect Dis 25:213–217

    Article  CAS  PubMed  Google Scholar 

  11. Miethke M, Pieroni M, Weber T, Brönstrup M, Hammann P, Halby L, Arimondo PB, Glaser P, Aigle B, Bode HB, Moreira R (2021) Towards the sustainable discovery and development of new antibiotics. Nature Reviews Chemistry 5:726–749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Souli M, Wennersten CB, Eliopoulos GM (1998) In vitro activity of BAY 12–8039, a new fluoroquinolone, against species representative of respiratory tract pathogens. Int J Antimicrob. Agents 10:23–30

    Article  CAS  PubMed  Google Scholar 

  13. Fonzé E, Vanhove M, Dive G, Sauvage E, Frere JM, Charlier P (2002) Crystal Structures of the Bacillus licheniformis BS3 Class A β-Lactamase and of the Acyl− Enzyme Adduct Formed with Cefoxitin. Biochemistry 41:1877–1885

    Article  PubMed  Google Scholar 

  14. Georg GI (1993) The Organic Chemistry of β-Lactamas (New York: VCH publishers) 121–96

  15. Buynak JD, Doppalapudi VR, Adam G (2000) The synthesis and evaluation of 3-substituted-7-(alkylidene) cephalosporin sulfones as β-lactamase inhibitors. Bioorg Med Chem Lett 10:853–857

    Article  CAS  PubMed  Google Scholar 

  16. Jones RN, Marshall SA, Varnam DJ (1998) Activity of a broad-spectrum cephalosporin (Ro 48–8391) alone and in combination with two novel β-lactamase inhibitors (Ro 48–5545 and Ro 48–8724). Diagn Microbiol Infect Dis 32:85–89

    Article  CAS  PubMed  Google Scholar 

  17. Vergauwe A, Van Geldre E, Inzé D, Van Montagu M, Van den Eeckhout E (1996) The use of amoxicillin and ticarcillin in combination with a β-lactamase inhibitor as decontaminating agents in the Agrobacterium tumefaciens-mediated transformation of Artemisia annua L. J Biotechnology 52:89–95

    Article  CAS  Google Scholar 

  18. Sondi I, Salopek-Sondi B (2004) Silver nanopartiklar som antimikrobiellt medel: en fallstudie på E. coli som modell för gramnegativa bakterier. J Colloid Interface Sci 275:177–182

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Lyon DY, Adams LK, Falkner JC, Alvarez PJ (2006) Antibacterial activity of fullerene water suspensions: effects of preparation method and particle size. Environ Sci Tech 40:4360–4366

    Article  CAS  Google Scholar 

  20. Lok CN, Ho CM, Chen R, He QY, Yu WY, Sun H, Che CM (2007) Silver nanoparticles: partial oxidation and antibacterial activities. J Biological Inorg. Chem. 12:527–534

    Article  CAS  Google Scholar 

  21. Heinlaan M, Ivask A, Blinova I, Dubourguier HC, Kahru A (2008) Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere 71:1308–1316

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Cao X, Li CM, Bao H, Bao Q, Dong H (2007) Fabrication of strongly fluorescent quantum dot− polymer composite in aqueous solution. Chem Mater 19:3773–3779

    Article  CAS  Google Scholar 

  23. Li R, Li CM, Bao H, Bao Q, Lee VS (2007) Stationary current generated from photocycle of a hybrid bacteriorhodopsin/quantum dot bionanosystem. App Phys Lett 91:223901

    Article  ADS  Google Scholar 

  24. Zhu C, Chen Z, Gao S, Goh BL, Samsudin IB, Lwe KW, Wu Y, Wu C, Su X (2019) Recent advances in non-toxic quantum dots and their biomedical applications. Progress in Natural Science: Mater Int 29:628–640

    Article  CAS  Google Scholar 

  25. Constantine CA, Gattás-Asfura KM, Mello SV, Crespo G, Rastogi V, Cheng TC, DeFrank JJ, Leblanc RM (2003) Layer-by-layer biosensor assembly incorporating functionalized quantum dots. Langmuir. 19:9863–9867

    Article  CAS  Google Scholar 

  26. Heger Z, Cernei N, Blazkova I, Kopel P, Masarik M, Zitka O, Adam V, Kizek R (2014) γ-Fe2O3 Nanoparticles Covered with Glutathione-Modified Quantum Dots as a Fluorescent Nanotransporter. Chromatographia 77:1415–1423

    Article  CAS  Google Scholar 

  27. Voura EB, Jaiswal JK, Mattoussi H, Simon SM (2004) Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence emission-scanning microscopy. Nature Medicine 10:993–998

    Article  CAS  PubMed  Google Scholar 

  28. Alivisatos AP (1996) Perspectives on the Physical Chemistry of Semiconductor Nanocrystals. J. Phys. Chem. 100:13226–13239

    Article  CAS  Google Scholar 

  29. Rhyner MN, Smith AM, Gao X, Mao H, Yang L, Nie S (2006) Quantum dots and multifunctional nanoparticles: new contrast agents for tumor imaging. Nanomedicine 1:209–217

    Article  CAS  PubMed  Google Scholar 

  30. Dwarakanath S, Bruno JG, Athmaram TN, Bali G, Vattem D, Rao P (2017) Antibody-quantum dot conjugates exhibit enhanced antibacterial effectvs. unconjugated quantum dots. Folia Microbiologica 52:31–34

    Article  Google Scholar 

  31. Ananth DA, Rameshkumar A, Jeyadevi R, Jagadeeswari S, Nagarajan N, Renganathan R, Sivasudha T (2015) Antibacterial potential of rutin conjugated with thioglycolic acid capped cadmium telluride quantum dots (TGA-CdTe QDs). Spectrochim. Acta A: Molecul Biomol Spectro 138:684–692

    Article  ADS  CAS  Google Scholar 

  32. Kloepfer JA, Mielke RE, Nadeau JL (2005) Uptake of CdSe and CdSe/ZnS quantum dots into bacteria via purine-dependent mechanisms. Appl Environ Microbiol 71:2548–2557

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  33. Allen PM, Bawendi MG (2008) Ternary I− III− VI quantum dots luminescent in the red to near-infrared. J Am Chem Soc 130:9240–9241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Blackman B, Battaglia D, Peng X (2008) Bright and water-soluble near IR-emitting CdSe/CdTe/ZnSe type-II/type-I nanocrystals, tuning the efficiency and stability by growth. Chem Mater 20:4847–4853

    Article  CAS  Google Scholar 

  35. Jensen KF, Bawendi MG (1997) (CdSe)ZnS Core−Shell Quantum Dots: Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites. J. Phys. Chem. B 101:9463–9475

    Article  Google Scholar 

  36. Du Y, Xu B, Fu T, Cai M, Li F, Zhang Y, Wang Q (2010) Near-infrared photoluminescent Ag2S quantum dots from a single source precursor. J Am Chem Soc 132:1470–1471

    Article  CAS  PubMed  Google Scholar 

  37. Hewa-Kasakarage NN, Gurusinghe NP, Zamkov M (2009) Blue-shifted emission in CdTe/ZnSe heterostructured nanocrystals. J Phys Chem C 113:4362–4368

    Article  CAS  Google Scholar 

  38. Shen S, Zhang Y, Peng L, Du Y, Wang Q (2011) Matchstick-Shaped Ag2S–ZnS Heteronanostructures Preserving both UV/Blue and Near-Infrared Photoluminescence. Angew Chem Int Ed 50:7115–7118

    Article  CAS  Google Scholar 

  39. Tsay JM, Pflughoefft M, Bentolila LA, Weiss S (2004) Hybrid approach to the synthesis of highly luminescent CdTe/ZnS and CdHgTe/ZnS nanocrystals. J Am Chem Soc 126:1926–1927

    Article  CAS  PubMed  Google Scholar 

  40. Zhang C, Ji X, Zhang Y, Zhou G, Ke X, Wang H, He Z (2013) One-pot synthesized aptamer-functionalized CdTe: Zn2+ quantum dots for tumor-targeted fluorescence imaging in vitro and in vivo. Anal Chem 85:5843–5849

    Article  CAS  PubMed  Google Scholar 

  41. Erogbogbo F, Yong KT, Roy I, Hu R, Law WC, Zhao W, Ding H, Wu F, Kumar R, Swihart MT, Prasad PN (2011) In vivo targeted cancer imaging, sentinel lymph node mapping and multi-channel imaging with biocompatible silicon nanocrystals. ACS Nano 5:413–423

    Article  CAS  PubMed  Google Scholar 

  42. Liu YF, Yu JS (2010) In situ synthesis of highly luminescent glutathione-capped CdTe/ZnS quantum dots with biocompatibility. J Colloid Interface Sci 351:1–9

    Article  ADS  CAS  PubMed  Google Scholar 

  43. Yu WW, Qu LH, Guo WZ, Peng XG (2003) Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem. Mater 15:2854–2860

    Article  CAS  Google Scholar 

  44. Bao H, Gong Y, Li Z, Gao M (2004) Enhancement effect of illumination on the photoluminescence of water-soluble CdTe nanocrystals: toward highly fluorescent CdTe/CdS core−shell structure. Chem Mater 16:3853–3859

    Article  CAS  Google Scholar 

  45. He Y, Sai LM, Lu HT, Hu M, Lai WY, Fan QL, Wang LH, Huang W (2007) Microwave-assisted synthesis of water-dispersed CdTe nanocrystals with high luminescent efficiency and narrow size distribution. Chem Mater 19:359–365

    Article  ADS  CAS  Google Scholar 

  46. He Y, Lu HT, Sai LM, Lai WY, Fan QL, Wang LH, Huang W (2006) Microwave-assisted growth and characterization of water-dispersed CdTe/CdS Core− Shell nanocrystals with high photoluminescence. J Phys Chem B 110:13370–13374

    Article  CAS  PubMed  Google Scholar 

  47. Dobrovolskaia MA, Clogston JD, Neun BW, Hall JB, Patri AK, McNeil SE (2008) Method for analysis of nanoparticle hemolytic properties in vitro. Nano Lett 8:2180–2187

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ostomel TA, Shi Q, Stoimenov PK, Stucky GD (2007) Metal oxide surface charge mediated hemostasis. Langmui 23:11233–11238

    Article  CAS  Google Scholar 

  49. Liu YF, Yu JS (2010) In situ synthesis of highly luminescent glutathione-capped CdTe/ZnS quantum dots with biocompatibility. J Colloid Interface Sci 333:690–698

    Article  ADS  Google Scholar 

  50. Trindade T, O’Brien P, Pickett NL (2001) Nanocrystalline semiconductors: synthesis, properties, and perspectives. Chem. Mater 13:3843–3858

    Article  CAS  Google Scholar 

  51. Lu Z, Li CM, Bao H, Qiao Y, Toh Y, Yang X (2008) Mechanism of antimicrobial activity of CdTe quantum dots. Langmuir 24:5445–5452

    Article  CAS  PubMed  Google Scholar 

  52. Neelgund GM, Oki A, Luo Z (2012) Antimicrobial activity of CdS and Ag2S quantum dots immobilized on poly(amidoamine) grafted carbon nanotubes. Colloids Surf. B Biointerfaces 100:215–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Luo Z, Wu Q, Zhang M, Li P, Ding Y (2011) Cooperative antimicrobial activity of CdTe quantum dots with Rocephin and fluorescence monitoring for Escherichia coli. J. Colloid Interface Sci. 362:100–106

    Article  ADS  CAS  PubMed  Google Scholar 

  54. Dhar R, Singh S, Kumar A (2015) Effect of capping agents on optical and antibacterial properties of cadmium selenide quantum dots. Bull. Mater. Sci. 38:1247–1252

    Article  Google Scholar 

  55. Thakur M, Pandey S, Mewada A, Patil V, Khade M, Goshi E, Sharon M (2014) Antibiotic conjugated fluorescent carbon dots as a theranostic agent for controlled drug release, bioimaging, and enhanced antimicrobial activity. J. Drug Delivery 2014:1–9

    Article  Google Scholar 

Download references

Acknowledgment

We are thankful to sophisticated analytical instrument research facility (AIRF) Jawaharlal Lal Nehru University (JNU), New Delhi for TEM analysis. We are also grateful to Prof. M.K. Deb, School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur for FTIR analysis. Authors are thankful to the head, School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur for providing laboratory facilities. Authors are thankful to the head, School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur for providing laboratory facilities.

Funding

Financial assistance from DST-FIST and SAP is acknowledged with appreciation.

Author information

Authors and Affiliations

Authors

Contributions

S.K.V.: experiment, data interpretation and drafting of the manuscript; J.K.: some measurement of fluorescence; R.N.: correction and review of manuscript; T.V.: helped in performing the antibacterial activity experiment and interpretation; S.K.J.: supervise all the antibacterial activity experiment and interpretation; M.L.S.: supervise all the experiment, interpretation of data and manuscript writing.

Corresponding author

Correspondence to Manmohan L. Satnami.

Ethics declarations

Ethical Approval

Not Applicable.

Consent to Participate

Not Applicable.

Consent for Publication

Not Applicable.

Conflict of Interests

The authors declare no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 136 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vaishanav, S.K., Korram, J., Verma, T.K. et al. Antibacterial Activity of CdTe/ZnS Quantum Dot-β Lactum Antibiotic Conjugates. J Fluoresc 34, 833–846 (2024). https://doi.org/10.1007/s10895-023-03316-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-023-03316-x

Keywords

Navigation