Skip to main content
Log in

Recent Applications of Quantum Dots in Pharmaceutical Analysis

  • REVIEW
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Nanotechnology has emerged as one of the most potential areas for pharmaceutical analysis. The need for nanomaterials in pharmaceutical analysis is comprehended in terms of economic challenges, health and safety concerns. Quantum dots (QDs)or colloidal semiconductor nanocrystals are new groups of fluorescent nanoparticles that bind nanotechnology to drug analysis. Because of their special physicochemical characteristics and small size, QDs are thought to be promising candidates for the electrical and luminescent probes development. They were originally developed as luminescent biological labels, but are now discovering new analytical chemistry applications, where their photo-luminescent properties are used in pharmaceutical, clinical analysis, food quality control and environmental monitoring. In this review, we discuss QDs regarding properties and advantages, advances in methods of synthesis and their recent applications in drug analysis in the recent last years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of Data and Materials

Not applicable

Abbreviations

GCE :

Glassy carbon electrode

GQDs :

Graphene quantum dots

HBNNS :

hexagonal boron nitride nanosheets

MIP :

Molecularly imprinted polymer

MPA :

Mercaptopropionic acid

MP S :

3-Mercapto-1-propanesulfonic acid

MSA :

Mercaptosuccinic acid

MWCNT :

Multiwall carbon nanotubes

N, S-CQDs :

Nitrogen and sulfur carbon quantum dots

PL :

Photoluminescence intensity

PEDOT :

Poly (3,4-ethylenedioxythiophene)

RH-CQDs :

Rice husk carbon quantum dots

SEM :

Scanning electron microscopy

SMIP :

Silica molecular imprinted polymer

TEM :

Transmission electron microscopy

TGA :

Thioglycolic acid

References

  1. Costa-Fernández JM, Pereiro R, Sanz-Medel A (2006) The use of luminescent quantum dots for optical sensing. TrAC Trends in Analytical Chemistry 25:207–218. https://doi.org/10.1016/j.trac.2005.07.008

    Article  CAS  Google Scholar 

  2. Alferov ZI (1998) The history and future of semiconductor heterostructures. Semiconductors 32:1–14. https://doi.org/10.1134/1.1187350

    Article  Google Scholar 

  3. Kubendhiran S, Bao Z, Dave K, Liu R-S (2019) Microfluidic synthesis of semiconducting colloidal quantum dots and their applications. ACS Applied Nano Materials 2:1773–1790. https://doi.org/10.1021/acsanm.9b00456

    Article  CAS  Google Scholar 

  4. Murray C, Norris DJ, Bawendi MG (1993) Synthesis and characterization of nearly monodisperse CdE (E= sulfur, selenium, tellurium) semiconductor nanocrystallites. J Am Chem Soc 115:8706–8715. https://doi.org/10.1021/ja00072a025

    Article  CAS  Google Scholar 

  5. Bhatt AN, Verma UK, Kumar B (2019) Impact of size and shape on trap state controlled luminescence properties of trioctylphosphine-capped cadmium selenide quantum dots. Journal of the Optical Society of America B 36:1466–1471. https://doi.org/10.1364/JOSAB.36.001466

    Article  CAS  Google Scholar 

  6. Chan WC, Maxwell DJ, Gao X, Bailey RE, Han M, Nie S (2002) Luminescent quantum dots for multiplexed biological detection and imaging. Curr Opin Biotechnol 13:40–46. https://doi.org/10.1016/S0958-1669(02)00282-3

    Article  CAS  PubMed  Google Scholar 

  7. Li H, Sun C, Vijayaraghavan R, Zhou F, Zhang X, MacFarlane DR (2016) Long lifetime photoluminescence in N, S co-doped carbon quantum dots from an ionic liquid and their applications in ultrasensitive detection of pesticides. Carbon 104:33–39. https://doi.org/10.1016/j.carbon.2016.03.040

    Article  CAS  Google Scholar 

  8. Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T (2008) Quantum dots versus organic dyes as fluorescent labels. Nat Methods 5:763–775. https://doi.org/10.1038/nmeth.1248

    Article  CAS  PubMed  Google Scholar 

  9. Wang F, Tan WB, Zhang Y, Fan X, Wang M (2005) Luminescent nanomaterials for biological labelling. Nanotechnology 17:R1. https://doi.org/10.1088/0957-4484/17/1/R01

    Article  CAS  Google Scholar 

  10. Badıllı U, Mollarasouli F, Bakirhan NK, Ozkan Y, Ozkan SA (2020) Role of quantum dots in pharmaceutical and biomedical analysis, and its application in drug delivery. TrAC Trends in Analytical Chemistry 131:116013. https://doi.org/10.1016/j.trac.2020.116013

    Article  CAS  Google Scholar 

  11. Shi C, Qi H, Ma R, Sun Z, Xiao L, Wei G, Huang Z, Liu S, Li J, Dong M (2019) N, S-self-doped carbon quantum dots from fungus fibers for sensing tetracyclines and for bioimaging cancer cells. Mater Sci Eng C 105:110132. https://doi.org/10.1016/j.msec.2019.110132

    Article  CAS  Google Scholar 

  12. Jaiswal JK, Simon SM (2004) Potentials and pitfalls of fluorescent quantum dots for biological imaging. Trends Cell Biol 14:497–504. https://doi.org/10.1016/j.tcb.2004.07.012

    Article  CAS  PubMed  Google Scholar 

  13. Tong X, Shi S, Tong C, Iftikhar A, Long R, Zhu Y (2020) Quantum/carbon dots-based fluorescent assays for enzyme activity. TrAC Trends in Analytical Chemistry 131:116008. https://doi.org/10.1016/j.trac.2020.116008

    Article  CAS  Google Scholar 

  14. Yang Q, Gong X, Song T, Yang J, Zhu S, Li Y, Cui Y, Li Y, Zhang B, Chang J (2011) Quantum dot-based immunochromatography test strip for rapid, quantitative and sensitive detection of alpha fetoprotein. Biosensors and Bioelectronics 30:145–150. https://doi.org/10.1016/j.bios.2011.09.002

    Article  CAS  PubMed  Google Scholar 

  15. Liu Z, Ma Q, Wang X, Lin Z, Zhang H, Liu L, Su X (2014) A novel fluorescent nanosensor for detection of heparin and heparinase based on CuInS2 quantum dots. Biosensors and Bioelectronics 54:617–622. https://doi.org/10.1016/j.bios.2013.11.050

    Article  CAS  PubMed  Google Scholar 

  16. Zhao M-X, Zeng E-Z (2015) Application of functional quantum dot nanoparticles as fluorescence probes in cell labeling and tumor diagnostic imaging. Nanoscale Res Lett 10:1–9. https://doi.org/10.1186/s11671-015-0873-8

    Article  CAS  Google Scholar 

  17. Jin S, Hu Y, Gu Z, Liu L, Wu H-C (2011) Application of quantum dots in biological imaging. J Nanomater. https://doi.org/10.1155/2011/834139

    Article  Google Scholar 

  18. Wu D, Du H, Yan X, Jie G (2022) Carbon quantum dot-based fluorescence quenching coupled with enzyme-assisted multiple cycle amplification for biosensing of miRNA. Microchem J 183:108116. https://doi.org/10.1016/j.microc.2022.108116

    Article  CAS  Google Scholar 

  19. Dey NS, Rao MB (2011) Quantum dot: Novel carrier for drug delivery. Int J Res Pharmaceut Biomed Sci 2:448–458

    Google Scholar 

  20. Giansante C (2020) Library Design of Ligands at the Surface of Colloidal Nanocrystals. Accounts of Chemical Research 53:1458–1467. https://doi.org/10.1021/acs.accounts.0c00204

    Article  CAS  PubMed  Google Scholar 

  21. Giansante C, Infante I (2017) Surface traps in colloidal quantum dots: a combined experimental and theoretical perspective. The journal of physical chemistry letters 8:5209–5215. https://doi.org/10.1021/acs.jpclett.7b02193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Orfield NJ, McBride JR, Keene JD, Davis LM, Rosenthal SJ (2015) Correlation of atomic structure and photoluminescence of the same quantum dot: Pinpointing surface and internal defects that inhibit photoluminescence. ACS nano 9:831–839. https://doi.org/10.1021/nn506420w

    Article  CAS  PubMed  Google Scholar 

  23. Kumari A, Sharma A, Malairaman U, Singh RR (2018) Proficient surface modification of CdSe quantum dots for highly luminescent and biocompatible probes for bioimaging: a comparative experimental investigation. J Lumin 199:174–182. https://doi.org/10.1016/j.jlumin.2018.03.032

    Article  CAS  Google Scholar 

  24. Karadurmus L, Ozcelikay G, Vural S, Ozkan SA (2021) An overview on quantum dot-based nanocomposites for electrochemical sensing on pharmaceutical assay. Iranian Journal of Pharmaceutical Research: IJPR 20:187. https://doi.org/10.22037/ijpr.2021.115279.15291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Frigerio C, Ribeiro DS, Rodrigues SSM, Abreu VL, Barbosa JA, Prior JA, Marques KL, Santos JL (2012) Application of quantum dots as analytical tools in automated chemical analysis: a review. Anal Chim Acta 735:9–22. https://doi.org/10.1016/j.aca.2012.04.042

    Article  CAS  PubMed  Google Scholar 

  26. Jha S, Mathur P, Ramteke S, Jain NK (2018) Pharmaceutical potential of quantum dots. Artificial cells, nanomedicine, and biotechnology 46:57–65. https://doi.org/10.1080/21691401.2017.1411932

    Article  CAS  PubMed  Google Scholar 

  27. Kandasamy G (2019) Recent advancements in doped/co-doped carbon quantum dots for multi-potential applications. C - J Carbon Res 5:24. https://doi.org/10.3390/c5020024

    Article  CAS  Google Scholar 

  28. Wang X, Feng Y, Dong P, Huang J (2019) A mini review on carbon quantum dots: preparation, properties, and electrocatalytic application. Front Chem. https://doi.org/10.3389/fchem.2019.00671

    Article  PubMed  PubMed Central  Google Scholar 

  29. Bailey RE, Smith AM, Nie S (2004) Quantum dots in biology and medicine. Phys E 25:1–12. https://doi.org/10.1016/j.physe.2004.07.013

    Article  CAS  Google Scholar 

  30. Mazumder S, Dey R, Mitra M, Mukherjee S, Das G (2009) Biofunctionalized quantum dots in biology and medicine. J Nanomater. https://doi.org/10.1155/2009/815734

    Article  Google Scholar 

  31. Kara HEŞ, Ertaş N (2017) Spectroscopic Analyses-Developments and Applications. IntechOpen, London 144–169. https://doi.org/10.5772/intechopen.70034

  32. Molaei MJ (2020) Principles, mechanisms, and application of carbon quantum dots in sensors: a review. Anal Methods 12:1266–1287. https://doi.org/10.1039/C9AY02696G

    Article  CAS  Google Scholar 

  33. Zuo P, Lu X, Sun Z, Guo Y, He H (2016) A review on syntheses, properties, characterization and bioanalytical applications of fluorescent carbon dots. Microchim Acta 183:519–542. https://doi.org/10.1007/s00604-015-1705-3

    Article  CAS  Google Scholar 

  34. Nsibande S, Forbes P (2016) Fluorescence detection of pesticides using quantum dot materials–a review. Anal Chim Acta 945:9–22. https://doi.org/10.1016/j.aca.2016.10.002

    Article  CAS  PubMed  Google Scholar 

  35. Magdy G, Elmansi H, Belal F (2022) Doped Carbon Dots as Promising Fluorescent Nanosensors: Synthesis, Characterization, and Recent Applications. Curr Pharm Des. https://doi.org/10.2174/1381612829666221103124856

    Article  Google Scholar 

  36. Moriyama S, Fuse T, Suzuki M, Aoyagi Y, Ishibashi K (2005) Four-electron shell structures and an interacting two-electron system in carbon-nanotube quantum dots. Phys Rev Lett 94

    Article  CAS  PubMed  Google Scholar 

  37. Henini M (2011) Handbook of self assembled semiconductor nanostructures for novel devices in photonics and electronics. Elsevier, London 1–841. https://doi.org/10.1016/B978-0-08-046325-4.X0001-1

  38. Reiss P, Protiere M, Li L (2009) Core/shell semiconductor nanocrystals. Small 5:154–168. https://doi.org/10.1002/smll.200800841

    Article  CAS  PubMed  Google Scholar 

  39. Thuy UTD, Toan PS, Chi TTK, Khang DD, Liem NQ (2011) CdTe quantum dots for an application in the life sciences. Advances in Natural Sciences: Nanoscience and Nanotechnology 1:045009. https://doi.org/10.1088/2043-6262/1/4/045009

    Article  CAS  Google Scholar 

  40. Guo W, Li JJ, Wang YA, Peng X (2003) Luminescent CdSe/CdS core/shell nanocrystals in dendron boxes: superior chemical, photochemical and thermal stability. J Am Chem Soc 125:3901–3909. https://doi.org/10.1021/ja028469c

    Article  CAS  PubMed  Google Scholar 

  41. Talapin DV, Rogach AL, Kornowski A, Haase M, Weller H (2001) Highly luminescent monodisperse CdSe and CdSe/ZnS nanocrystals synthesized in a hexadecylamine− trioctylphosphine oxide− trioctylphospine mixture. Nano Lett 1:207–211. https://doi.org/10.1021/nl0155126

    Article  CAS  PubMed  Google Scholar 

  42. Badounas DA, Souliotis M, Garoufalis CS (2017) Theoretical Study of Linear and Nonlinear Optical Properties of ZnO/MgO Core/Shell and Inverted Core/Shell Quantum Dots. Journal of Advanced Physics 6:477–481. https://doi.org/10.1166/jap.2017.1361

    Article  Google Scholar 

  43. Bailey RE, Nie S (2003) Alloyed semiconductor quantum dots: tuning the optical properties without changing the particle size. J Am Chem Soc 125:7100–7106. https://doi.org/10.1021/ja035000o

    Article  CAS  PubMed  Google Scholar 

  44. Prusty D, Paramanik L, Parida K (2021) Recent Advances on Alloyed Quantum Dots for Photocatalytic Hydrogen Evolution: A Mini-Review. Energy Fuels 35:4670–4686. https://doi.org/10.1021/acs.energyfuels.0c04163

    Article  CAS  Google Scholar 

  45. Adegoke O, Park EY (2016) Size-confined fixed-composition and composition-dependent engineered band gap alloying induces different internal structures in L-cysteine-capped alloyed quaternary CdZnTeS quantum dots. Sci Rep 6:1–9. https://doi.org/10.1038/srep27288

    Article  CAS  Google Scholar 

  46. Qu L (2010)Concentration-gradient alloyed semiconductor quantum dots, LED and white light applications, US20100283034A1, Google Patents, United States,US20100283034A1

  47. Reshma V, Mohanan P (2019) Quantum dots: Applications and safety consequences. J Lumin 205:287–298. https://doi.org/10.1016/j.jlumin.2018.09.015

    Article  CAS  Google Scholar 

  48. Peng H, Travas-Sejdic J (2009) Simple aqueous solution route to luminescent carbogenic dots from carbohydrates. Chem Mater 21:5563–5565. https://doi.org/10.1021/cm901593y

    Article  CAS  Google Scholar 

  49. Reimer M, Akopian N, Barkelid M, Bulgarini G, Heeres R, Hocevar M, Witek B, Bakkers E, Zwiller V, Tartakovskii A (2012) Quantum Dots Optics. Electron Transport and Future Applications, Cambridge University Press, United Kingdom. https://doi.org/10.1017/CBO9780511998331.003

    Article  Google Scholar 

  50. Gerion D, Pinaud F, Williams SC, Parak WJ, Zanchet D, Weiss S, Alivisatos AP (2001) Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots. J Phys Chem B 105:8861–8871. https://doi.org/10.1021/jp0105488

    Article  CAS  Google Scholar 

  51. Pinaud F, Michalet X, Bentolila LA, Tsay JM, Doose S, Li JJ, Iyer G, Weiss S (2006) Advances in fluorescence imaging with quantum dot bio-probes. Biomaterials 27:1679–1687. https://doi.org/10.1016/j.biomaterials.2005.11.018

    Article  CAS  PubMed  Google Scholar 

  52. Kuçur E, Boldt FM, Cavaliere-Jaricot S, Ziegler J, Nann T (2007) Quantitative analysis of cadmium selenide nanocrystal concentration by comparative techniques. Anal Chem 79:8987–8993. https://doi.org/10.1021/ac0715064

    Article  CAS  PubMed  Google Scholar 

  53. Yu WW, Qu L, Guo W, Peng X (2003) Experimental determination of the extinction coefficient of CdTe. CdSe, and CdS nanocrystals, Chemistry of Materials 15:2854–2860. https://doi.org/10.1021/cm034081k

    Article  CAS  Google Scholar 

  54. Rueda D, Walter NG (2006) Fluorescent energy transfer readout of an aptazyme-based biosensor. Fluorescent Energy Transfer Nucleic Acid Probes 289–310. https://doi.org/10.1385/1-59745-069-3:289

  55. Dos Santos MC, Algar WR, Medintz IL, Hildebrandt N (2020) Quantum dots for Förster resonance energy transfer (FRET). TrAC Trends Anal Chem 125:115819. https://doi.org/10.1016/j.trac.2020.115819

    Article  CAS  Google Scholar 

  56. Franchi S, Trevisi G, Seravalli L, Frigeri P (2003) Quantum dot nanostructures and molecular beam epitaxy. Prog Cryst Growth Charact Mater 47:166–195. https://doi.org/10.1016/j.pcrysgrow.2005.01.002

    Article  CAS  Google Scholar 

  57. Kalita H, Palaparthy VS, Baghini MS, Aslam M (2020) Electrochemical synthesis of graphene quantum dots from graphene oxide at room temperature and its soil moisture sensing properties. Carbon 165:9–17. https://doi.org/10.1016/j.carbon.2020.04.021

    Article  CAS  Google Scholar 

  58. Chen Y, Sun L, Liao F, Dang Q, Shao M (2019) Fluorescent-stable and water-soluble two-component-modified silicon quantum dots and their application for bioimaging. J Lumin 215:116644. https://doi.org/10.1016/j.jlumin.2019.116644

    Article  CAS  Google Scholar 

  59. Fu Y, Gao G, Zhi J (2019) Electrochemical synthesis of multicolor fluorescent N-doped graphene quantum dots as a ferric ion sensor and their application in bioimaging. Journal of Materials Chemistry B 7:1494–1502. https://doi.org/10.1039/C8TB03103G

    Article  CAS  PubMed  Google Scholar 

  60. Zhang YM, Zhang J, Zhu ZQ, Liu QJ (2016) Low-cost preparation of graphene quantum dots by liquid-phase exfoliation of carbon fibers. Mater Sci Forum 852:489–495. https://doi.org/10.4028/www.scientific.net/MSF.852.489

    Article  Google Scholar 

  61. Sarkar S, Gandla D, Venkatesh Y, Bangal PR, Ghosh S, Yang Y, Misra S (2016) Graphene quantum dots from graphite by liquid exfoliation showing excitation-independent emission, fluorescence upconversion and delayed fluorescence. Phys Chem Chem Phys 18:21278–21287. https://doi.org/10.1039/C6CP01528J

    Article  CAS  PubMed  Google Scholar 

  62. Palankar R, Medvedev N, Rong A, Delcea M (2013) Fabrication of quantum dot microarrays using electron beam lithography for applications in analyte sensing and cellular dynamics. ACS nano 7:4617–4628. https://doi.org/10.1021/nn401424y

    Article  CAS  PubMed  Google Scholar 

  63. Talat M, Awasthi K, Singh VK, Srivastava O (2021)Functionalized Nanomaterials I: Fabrications, CRC Press, pp 125–134

  64. Biazar N, Poursalehi R, Delavari H (2018) Optical and structural properties of carbon dots/TiO2 nanostructures prepared via DC arc discharge in liquid. AIP Conf Proc 1920:020033. https://doi.org/10.1063/1.5018965

    Article  CAS  Google Scholar 

  65. Jingjian Z, Pevere F, Gatty HK, Linnros J, Sychugov I (2020) Wafer-scale fabrication of isolated luminescent silicon quantum dots using standard CMOS technology. Nanotechnology 31

    Article  CAS  PubMed  Google Scholar 

  66. Sombrio G, Oliveira E, Strassner J, Richter J, Doering C, Fouckhardt H (2021) Doped or quantum-dot layers as in situ etch-stop indicators for III/V Semiconductor Reactive Ion Etching (RIE) Using Reflectance Anisotropy Spectroscopy (RAS). Micromachines 12:502. https://doi.org/10.3390/mi12050502

    Article  PubMed  PubMed Central  Google Scholar 

  67. Calabro RL, Yang D-S, Kim DY (2019) Controlled nitrogen doping of graphene quantum dots through laser ablation in aqueous solutions for photoluminescence and electrocatalytic applications. ACS Applied Nano Materials 2:6948–6959. https://doi.org/10.1021/acsanm.9b01433

    Article  CAS  Google Scholar 

  68. Riedel R, Mahr N, Yao C, Wu A, Yang F, Hampp N (2020) Synthesis of gold–silica core–shell nanoparticles by pulsed laser ablation in liquid and their physico-chemical properties towards photothermal cancer therapy. Nanoscale 12:3007–3018. https://doi.org/10.1039/C9NR07129F

    Article  CAS  PubMed  Google Scholar 

  69. Menazea A (2020) Femtosecond laser ablation-assisted synthesis of silver nanoparticles in organic and inorganic liquids medium and their antibacterial efficiency. Radiat Phys Chem 168:108616. https://doi.org/10.1016/j.radphyschem.2019.108616

    Article  CAS  Google Scholar 

  70. Boruah A, Saikia M, Das T, Goswamee RL, Saikia BK (2020) Blue-emitting fluorescent carbon quantum dots from waste biomass sources and their application in fluoride ion detection in water. J Photochem Photobiol B Biol 209:111940. https://doi.org/10.1016/j.jphotobiol.2020.111940

    Article  CAS  Google Scholar 

  71. Kumar VB, Tang J, Lee KJ, Pol VG, Gedanken A (2016) In situ sonochemical synthesis of luminescent Sn@ C-dots and a hybrid Sn@ C-dots@ Sn anode for lithium-ion batteries. RSC Adv 6:66256–66265. https://doi.org/10.1039/C6RA09926B

    Article  CAS  Google Scholar 

  72. Tomioka K, Motohisa J, Fukui T (2020) Rational synthesis of atomically thin quantum structures in nanowires based on nucleation processes. Sci Rep 10:1–9. https://doi.org/10.1038/s41598-020-67625-y

    Article  CAS  Google Scholar 

  73. Jin Z, Lyu J, Zhao Y-L, Li H, Chen Z, Lin X, Xie G, Liu X, Kai J-J, Qiu H-J (2021) Top–down synthesis of noble metal particles on high-entropy oxide supports for electrocatalysis. Chem Mater 33:1771–1780. https://doi.org/10.1021/acs.chemmater.0c04695

    Article  CAS  Google Scholar 

  74. Valizadeh A, Mikaeili H, Samiei M, Farkhani SM, Zarghami N, Akbarzadeh A, Davaran S (2012) Quantum dots: synthesis, bioapplications, and toxicity. Nanoscale Res Lett 7:1–14. https://doi.org/10.1186/1556-276X-7-480

    Article  CAS  Google Scholar 

  75. Kitai A (2008) Luminescent materials and applications. John Wiley & Sons, England, p 25

    Book  Google Scholar 

  76. Pandey P, Dahiya M (2016) A brief review on inorganic nanoparticles. Journal of Critical Reviews 3:18–26

    Google Scholar 

  77. Thondavada N, Chokkareddy R, Naidu NV, Redhi GG (2020)Nanomaterials in Diagnostic Tools and Devices. Elsevier, London, pp 417–437. https://doi.org/10.1016/B978-0-12-817923-9.00015-8

  78. Zhang A, Chen L, Wang M, Li J, Chen L, Shi R, Zhang N, Yang P (2020) Study on the luminescence stability of CdSe/CdxZn1-xS quantum dots during the silication process. J Luminesc 219:116907. https://doi.org/10.1016/j.jlumin.2019.116907

    Article  CAS  Google Scholar 

  79. Hu Z, Dai H, Wei X, Su D, Wei C, Chen Y, Xie F, Zhang W, Guo R, Qu S (2020) 49.25% efficient cyan emissive sulfur dots via a microwave-assisted route. RSC Adv 10:17266–17269. https://doi.org/10.1039/D0RA02778B

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Mollarasouli F, Majidi MR, Asadpour-Zeynali K (2019) Facile synthesis of ZnTe/Quinhydrone nanocomposite as a promising catalyst for electro-oxidation of ethanol in alkaline medium. Int J Hydrog Energy 44:22085–22097. https://doi.org/10.1016/j.ijhydene.2019.06.071

    Article  CAS  Google Scholar 

  81. Mollarasouli F, Kurbanoglu S, Asadpour-Zeynali K, Ozkan SA (2020) Preparation of porous Cu metal organic framework/ZnTe nanorods/Au nanoparticles hybrid platform for nonenzymatic determination of catechol. J Electroanal Chem 856:113672. https://doi.org/10.1016/j.jelechem.2019.113672

    Article  CAS  Google Scholar 

  82. Chen T, Ren Y, Xu Y, Jiang W, Wang L, Jiang W, Xie Z (2021) Room-temperature ionic-liquid-assisted hydrothermal synthesis of Ag-In-Zn-S quantum dots for WLEDs. J Alloys Compd 858:158084. https://doi.org/10.1016/j.jallcom.2020.158084

    Article  CAS  Google Scholar 

  83. Khan ZM, Saifi S, Aslam Z, Khan SA, Zulfequar M (2020) A facile one step hydrothermal synthesis of carbon quantum dots for label-free fluorescence sensing approach to detect picric acid in aqueous solution. J Photochem Photobiol A Chem 388:112201. https://doi.org/10.1016/j.jphotochem.2019.112201

    Article  CAS  Google Scholar 

  84. Luo P, Guan X, Yu Y, Li X, Yan F (2019) Hydrothermal synthesis of graphene quantum dots supported on three-dimensional graphene for supercapacitors. Nanomaterials 9:201. https://doi.org/10.3390/nano9020201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Alnajar MH, Kumar B (2022) Comparative investigation on the Di-/ferro-electric and optical properties of Ce/Nd dual doped ZnO nanostructures prepared in different reaction mechanisms. Physica E Low Dimens Syst Nanostruct 115110. https://doi.org/10.1016/j.physe.2021.115110

  86. Guo C, Cao K, Zhang Z, Xiong Y, Chen Y, Wang Y (2020) ZnS Quantum Dots/Gelatin Nanocomposites with a Thermo-Responsive Sol-Gel Transition Property Produced by a Facile and Green One-Pot Method. ACS SustainChem Eng 8:4346–4352. https://doi.org/10.1021/acssuschemeng.9b06395

    Article  CAS  Google Scholar 

  87. Al Ja’farawy MS, Purwanto A, Widiyandari H (2022) Carbon quantum dots supported zinc oxide (ZnO/CQDs) efficient photocatalyst for organic pollutant degradation–a systematic review. Environ Nanotechnol Monit Manag 100681. https://doi.org/10.1016/j.enmm.2022.100681

  88. Lisensky G, McFarland-Porter R, Paquin W, Liu K (2020) Synthesis and Analysis of Zinc Copper Indium Sulfide Quantum Dot Nanoparticles. J Chem Educ 97:806–812. https://doi.org/10.1021/acs.jchemed.9b00642

    Article  CAS  Google Scholar 

  89. Rafienia M, Bigham A, Hassanzadeh-Tabrizi SA (2018) Solvothermal synthesis of magnetic spinel ferrites. J Medical Signals Sens 8:108

    Article  Google Scholar 

  90. Han W, Li D, Zhang M, Ximin H, Duan X, Liu S, Wang S (2020) Photocatalytic activation of peroxymonosulfate by surface-tailored carbon quantum dots. J Hazard Mater 395:122695. https://doi.org/10.1016/j.jhazmat.2020.122695

    Article  CAS  PubMed  Google Scholar 

  91. Jin S, Ni Y, Hao Z, Zhang K, Lu Y, Yan Z, Wei Y, Lu YR, Chan TS, Chen J (2020) A universal graphene quantum dot tethering design strategy to synthesize single-atom catalysts. Angew Chem Int Ed 59:21885–21889. https://doi.org/10.1002/anie.202008422

    Article  CAS  Google Scholar 

  92. Thomas D, Lee HO, Santiago KC, Pelzer M, Kuti A, Jenrette E, Bahoura M (2020) Rapid microwave synthesis of tunable cadmium selenide (CdSe) quantum dots for optoelectronic applications. J Nanomater 2020:8. https://doi.org/10.1155/2020/5056875

    Article  CAS  Google Scholar 

  93. Rodriguez-Padron D, Algarra M, Tarelho LA, Frade J, Franco A, de Miguel G, Jiménez J, Rodriguez-Castellon E, Luque R (2018) Catalyzed microwave-assisted preparation of carbon quantum dots from lignocellulosic residues. ACS Sustainable Chemistry & Engineering 6:7200–7205. https://doi.org/10.1021/acssuschemeng.7b03848

    Article  CAS  Google Scholar 

  94. Yang P, Zhu Z, Chen M, Chen W, Zhou X (2018) Microwave-assisted synthesis of xylan-derived carbon quantum dots for tetracycline sensing. Opt Mater 85:329–336. https://doi.org/10.1016/j.optmat.2018.06.034

    Article  CAS  Google Scholar 

  95. Aleinawi MH, Ammar AU, Buldu-Akturk M, Turhan NS, Nadupalli S, Erdem E (2022) Spectroscopic Probing Of Mn-Doped ZnO Nanowires Synthesized via a Microwave-Assisted Route. The Journal of Physical Chemistry C 126:4229–4240. https://doi.org/10.1021/acs.jpcc.2c00009

    Article  CAS  Google Scholar 

  96. Goudarzi A, Langroodi SM, Arefkhani M, Langeroodi NS (2022) Study of optical properties of ZnS and MnZnS (ZnS/MnS) nanostructure thin films; Prepared by microwave-assisted chemical bath deposition method. Mater Chem Phys 275:125103. https://doi.org/10.1016/j.matchemphys.2021.125103

    Article  CAS  Google Scholar 

  97. Liao G, Luo J, Cui T, Zou J, Xu M, Ma Y, Shi L, Jia J, Ma C, Li H (2022) Microwave-assisted one-pot synthesis of carbon dots for highly sensitive and selective detection of selenite. Microchem J 179:107440. https://doi.org/10.1016/j.microc.2022.107440

    Article  CAS  Google Scholar 

  98. Peng J, Zhao Z, Zheng M, Su B, Chen X, Chen X (2020) Electrochemical synthesis of phosphorus and sulfur co-doped graphene quantum dots as efficient electrochemiluminescent immunomarkers for monitoring okadaic acid. Sens Actuators B Chem 304:27383. https://doi.org/10.1016/j.snb.2019.127383

    Article  CAS  Google Scholar 

  99. Gajendiran J, Vijayakumar V, Senthil V, Reddy CP, Ramya JR, Gokulraj S (2020) Ionic liquid assisted wet chemical synthesis CdS quantum dots and their structural, morphological, optical, electrochemical, photocatalytic, antibacterial and hemocompatibility characterization. Optik 213:164638. https://doi.org/10.1016/j.ijleo.2020.164638

    Article  CAS  Google Scholar 

  100. Sarkar T, Dhiman TK, Sajwan RK, Sri S, Solanki PR (2020) Studies on carbon-quantum-dot-embedded iron oxide nanoparticles and their electrochemical response. Nanotechnology 31:355502. https://doi.org/10.1088/1361-6528/ab925e

    Article  CAS  PubMed  Google Scholar 

  101. Balamurugan K, Karthik R, Chen S-M, Sukanya R, Bhuvaneswari T, Biju V, Shim J-J, Breslin CB (2022) Heterostructures of mixed metal oxides (ZnMnO3/ZnO) synthesized by a wet-chemical approach and their application for the electrochemical detection of the drug chlorpromazine. Compos Part B Eng 109822. https://doi.org/10.1016/j.compositesb.2022.109822

  102. Kiprotich S, Dejene F, Onani MO (2022) Effects of growth time on the material properties of CdTe/CdSe core/shell nanoparticles prepared by a facile wet chemical route. Mater Res Express 9

  103. Yang W, Li X, Fei L, Liu W, Liu X, Xu H, Liu Y (2022) A review on sustainable synthetic approaches toward photoluminescent quantum dots. Green Chem. https://doi.org/10.1039/D1GC02964A

    Article  Google Scholar 

  104. Patra P, Kumar R, Mahato PK, Bhakat C, Kumar C (2022) Structural, morphological, and optical properties of CdS and nickel doped CdS nanocrystals synthesized via a bottom-up approach. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2022.02.261

    Article  Google Scholar 

  105. Zhu Q, Wang S, Wang X, Suwardi A, Chua MH, Soo XYD, Xu J (2021) Bottom-up engineering strategies for high-performance thermoelectric materials. Nano-Micro Letters 13:1–38. https://doi.org/10.1007/s40820-021-00637-z

    Article  CAS  Google Scholar 

  106. Brennan JG, Siegrist T, Carroll P, Stuczynski S, Brus L, Steigerwald M (1989) The preparation of large semiconductor clusters via the pyrolysis of a molecular precursor. J Am Chem Soc 111:4141–4143. https://doi.org/10.1021/ja00193a079

    Article  CAS  Google Scholar 

  107. Malik MA, Malik SN, Alenad A (2015) 11 Nanomaterials for Solar Energy. CRC Press, United States, p 10

    Google Scholar 

  108. Liu Z-Y, Liu A-A, Fu H, Cheng Q-Y, Zhang M-Y, Pan M-M, Liu L-P, Luo M-Y, Tang B, Zhao W (2021) Breaking through the Size Control Dilemma of Silver Chalcogenide Quantum Dots via Trialkylphosphine-Induced Ripening: Leading to Ag2Te Emitting from 950 to 2100 nm. J Am Chem Soc 143:12867–12877. https://doi.org/10.1021/jacs.1c06661

    Article  CAS  PubMed  Google Scholar 

  109. Mishra S, Gahlot S (2022) In: Apblett AW, Barron AR, Hepp AF (eds) Nanomaterials via Single-Source Precursors, Elsevier, London, pp 201–218. https://doi.org/10.1016/C2019-0-01135-1

  110. Ding S, Hao M, Lin T, Bai Y, Wang L (2022) Ligand engineering of perovskite quantum dots for efficient and stable solar cells. J Energy Chem 69:626–648. https://doi.org/10.1016/j.jechem.2022.02.006

    Article  CAS  Google Scholar 

  111. Chen P-R, Hoang M-S, Lai K-Y, Chen H-S (2022) Bifunctional Metal Oleate as an Alternative Method to Remove Surface Oxide and Passivate Surface Defects of Aminophosphine-Based InP Quantum Dots. Nanomaterials 12:573. https://doi.org/10.3390/nano12030573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Huang Y, Cohen TA, Sperry BM, Larson H, Nguyen HA, Homer MK, Dou FY, Jacoby LM, Cossairt BM, Gamelin DR (2022) Organic building blocks at inorganic nanomaterial interfaces. Mater Horiz 9:61–87. https://doi.org/10.1039/D1MH01294K

    Article  CAS  PubMed  Google Scholar 

  113. Ondry JC, Philbin JP, Lostica M, Rabani E, Alivisatos AP (2020) Colloidal synthesis path to 2D crystalline quantum dot superlattices. ACS nano 15:2251–2262. https://doi.org/10.1021/acsnano.0c07202

    Article  CAS  PubMed  Google Scholar 

  114. Generalova AN, Sizova SV, Zdobnova TA, Zarifullina MM, Artemyev MV, Baranov AV, Oleinikov VA, Zubov VP, Deyev SM (2011) Submicron polymer particles containing fluorescent semiconductor nanocrystals CdSe/ZnS for bioassays. Nanomedicine 6:195–209. https://doi.org/10.2217/nnm.10.162

    Article  CAS  PubMed  Google Scholar 

  115. Schiffman JD, Balakrishna RG (2018) Quantum dots as fluorescent probes: Synthesis, surface chemistry, energy transfer mechanisms, and applications. Sensors and Actuators B: Chemical 258:1191–1214. https://doi.org/10.1016/j.snb.2017.11.189

    Article  CAS  Google Scholar 

  116. Lu E, Pichaandi J, Rastogi CK, Winnik MA (2022) Effect of Excess Ligand on the Reverse Microemulsion Silica Coating of NaLnF4 Nanoparticles. Langmuir. https://doi.org/10.1021/acs.langmuir.2c00372

    Article  PubMed  PubMed Central  Google Scholar 

  117. Zhu H, Cheng M, Li J, Yang S, Tao X, Yu Y, Jiang Y (2022) Independent dispersed and highly water-oxygen environment stable FAPbBr3 QDs-polymer composite for down-conversion display films. Chem Eng J 428:130974. https://doi.org/10.1016/j.cej.2021.130974

    Article  CAS  Google Scholar 

  118. Zhou S (2021) Rapid separation and purification of lead halide perovskite quantum dots through differential centrifugation in nonpolar solvent. RSC Adv 11:28410–28419. https://doi.org/10.1039/D1RA04578D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Li G, Wang H, Zhang T, Mi L, Zhang Y, Zhang Z, Zhang W, Jiang Y (2016) Solvent-polarity-engineered controllable synthesis of highly fluorescent cesium lead halide perovskite quantum dots and their use in white light-emitting diodes. Adv Func Mater 26:8478–8486. https://doi.org/10.1002/adfm.201603734

    Article  CAS  Google Scholar 

  120. Adhikari C (2021) Polymer nanoparticles-preparations, applications and future insights: a concise review. Polym-Plast Tech Mater 60:1996–2024. https://doi.org/10.1080/25740881.2021.1939715

    Article  CAS  Google Scholar 

  121. Song Z, Quan F, Xu Y, Liu M, Cui L, Liu J (2016) Multifunctional N, S co-doped carbon quantum dots with pH-and thermo-dependent switchable fluorescent properties and highly selective detection of glutathione. Carbon 104:169–178. https://doi.org/10.1016/j.carbon.2016.04.003

    Article  CAS  Google Scholar 

  122. Srivastava R (2012) Synthesis and characterization techniques of nanomaterials. International Journal of Green Nanotechnology 4:17–27. https://doi.org/10.1080/19430892.2012.654738

    Article  Google Scholar 

  123. Chawla P, Kaushik R, Swaraj VS, Kumar N (2018) Organophosphorus pesticides residues in food and their colorimetric detection. Environmental Nanotechnology, Monitoring & Management 10:292–307. https://doi.org/10.1016/j.enmm.2018.07.013

    Article  Google Scholar 

  124. Sharma P, Sharma A, Sharma M, Bhalla N, Estrela P, Jain A, Thakur P, Thakur A (2017) Nanomaterial fungicides: in vitro and in vivo antimycotic activity of cobalt and nickel nanoferrites on phytopathogenic fungi. Global Chall 1:1700041. https://doi.org/10.1002/gch2.201700041

    Article  Google Scholar 

  125. Zhao C, Yan S, Liu J, Xiong Z, Zhao L (2022) Octadecylamine and serine-derived carbon dots-modified silica gel for reversed phase/hydrophilic interaction liquid chromatography. Microchem J 183

    Article  CAS  Google Scholar 

  126. Mehta VN, Mungara AK, Kailasa SK (2013) Dopamine dithiocarbamate functionalized silver nanoparticles as colorimetric sensors for the detection of cobalt ion. Anal Methods 5:1818–1822.http://xlink.rsc.org/?DOI=c3ay26150f

  127. Pirot SM, Omer KM (2022) Surface imprinted polymer on dual emitting MOF functionalized with blue copper nanoclusters and yellow carbon dots as a highly specific ratiometric fluorescence probe for ascorbic acid. Microchem J 182:107921. https://doi.org/10.1016/j.microc.2022.107921

    Article  CAS  Google Scholar 

  128. Zhou Y, Wang P, Su X, Zhao H, He Y (2013) Colorimetric detection of ractopamine and salbutamol using gold nanoparticles functionalized with melamine as a probe. Talanta 112:20–25. https://doi.org/10.1016/j.talanta.2013.03.033

    Article  CAS  PubMed  Google Scholar 

  129. Xiong D, Chen M, Li H (2008) Synthesis of para-sulfonatocalix [4] arene-modified silver nanoparticles as colorimetric histidine probes. Chem Commun 880–882. https://doi.org/10.1039/B716270G

  130. Vilela D, González MC, Escarpa A (2012) Sensing colorimetric approaches based on gold and silver nanoparticles aggregation: chemical creativity behind the assay. A review. Anal Chim Acta 751:24–43. https://doi.org/10.1016/j.aca.2012.08.043

    Article  CAS  PubMed  Google Scholar 

  131. Zhang Z, Chen J-J, Lyu X-J, Yin H, Sheng G-P (2014) Complete mineralization of perfluorooctanoic acid (PFOA) by γ-irradiation in aqueous solution. Sci Rep 4:1–6. https://doi.org/10.1038/srep07418

    Article  CAS  Google Scholar 

  132. Feng L, Musto CJ, Kemling JW, Lim SH, Zhong W, Suslick KS (2010) Colorimetric sensor array for determination and identification of toxic industrial chemicals. Anal Chem 82:9433–9440. https://doi.org/10.1021/ac1020886

    Article  CAS  PubMed  Google Scholar 

  133. Chen L, Li J, Chen L (2014) Colorimetric detection of mercury species based on functionalized gold nanoparticles. ACS Appl Mater Interfaces 6:15897–15904. https://doi.org/10.1021/am503531c

    Article  CAS  PubMed  Google Scholar 

  134. Hrapovic S, Majid E, Liu Y, Male K, Luong JH (2006) Metallic nanoparticle− carbon nanotube composites for electrochemical determination of explosive nitroaromatic compounds. Anal Chem 78:5504–5512. https://doi.org/10.1021/ac060435q

    Article  CAS  PubMed  Google Scholar 

  135. Jazayeri MH, Aghaie T, Avan A, Vatankhah A, Ghaffari MRS (2018) Colorimetric detection based on gold nano particles (GNPs): An easy, fast, inexpensive, low-cost and short time method in detection of analytes (protein, DNA, and ion). Sens Bio Sens 20:1–8. https://doi.org/10.1016/j.sbsr.2018.05.002

    Article  Google Scholar 

  136. Kailasa SK, Koduru JR, Desai ML, Park TJ, Singhal RK, Basu H (2018) Recent progress on surface chemistry of plasmonic metal nanoparticles for colorimetric assay of drugs in pharmaceutical and biological samples. TrAC Trends Anal Chem 105:106–120. https://doi.org/10.1016/j.trac.2018.05.004

    Article  CAS  Google Scholar 

  137. Belal F, Mabrouk M, Hammad S, Barseem A, Ahmed H (2021) One-pot synthesis of fluorescent nitrogen and sulfur-carbon quantum dots as a sensitive nanosensor for trimetazidine determination. Luminescence 36:1435–1443. https://doi.org/10.1002/bio.4083

    Article  CAS  PubMed  Google Scholar 

  138. Belal F, Mabrouk M, Hammad S, Barseem A, Ahmed H (2021) A novel eplerenone ecofriendly fluorescent nanosensor based on nitrogen and sulfur-carbon quantum dots. J Fluoresc 31:85–90. https://doi.org/10.1007/s10895-020-02638-4

    Article  CAS  PubMed  Google Scholar 

  139. Wen L-N, Xie M-X (2014) Competitive binding assay for G-quadruplex DNA and sanguinarine based on room temperature phosphorescence of Mn-doped ZnS quantum dots. J Photochem Photobiol, A 279:24–31. https://doi.org/10.1016/j.jphotochem.2013.12.024

    Article  CAS  Google Scholar 

  140. Yamashita K, Nakate T, Okimoto K, Ohike A, Tokunaga Y, Ibuki R, Higaki K, Kimura T (2003) Establishment of new preparation method for solid dispersion formulation of tacrolimus. Int J Pharm 267:79–91. https://doi.org/10.1016/j.ijpharm.2003.07.010

    Article  CAS  PubMed  Google Scholar 

  141. Miao Y, Zhang Z, Gong Y, Yan G (2014) Phosphorescent quantum dots/doxorubicin nanohybrids based on photoinduced electron transfer for detection of DNA. Biosens Bioelectron 59:300–306. https://doi.org/10.1016/j.bios.2014.03.076

    Article  CAS  PubMed  Google Scholar 

  142. Kara HEŞ, Demirhan B, Demİrhan BE (2016) Mn-doped ZnS quantum dots as a room-temperature phosphorescent probe for analysis of glutamic acid in foodstuffs. Turk J Chem 40:762–771. https://doi.org/10.3906/kim-1601-67

    Article  CAS  Google Scholar 

  143. Banin U, Lee J, Guzelian A, Kadavanich A, Alivisatos A (1997) Exchange interaction in InAs nanocrystal quantum dots. Superlattices Microstruct 22:559–568. https://doi.org/10.1006/spmi.1997.0504

    Article  CAS  Google Scholar 

  144. Xu X, Liu X, Nie Z, Pan Y, Guo M, Yao S (2011) Label-free fluorescent detection of protein kinase activity based on the aggregation behavior of unmodified quantum dots. Anal Chem 83:52–59

    Article  CAS  PubMed  Google Scholar 

  145. Deng Z, Zhang Y, Yue J, Tang F, Wei Q (2007) Green and orange CdTe quantum dots as effective pH-sensitive fluorescent probes for dual simultaneous and independent detection of viruses. J Phys Chem B 111:12024–12031. https://doi.org/10.1021/jp074609z

    Article  CAS  PubMed  Google Scholar 

  146. Zhang C-Y, Hu J (2010) Single quantum dot-based nanosensor for multiple DNA detection. Anal Chem 82:1921–1927. https://doi.org/10.1021/ac9026675

    Article  CAS  PubMed  Google Scholar 

  147. Zhang J, Nan D, Pan S, Liu H, Yang H, Hu X (2019) N, S co-doped carbon dots as a dual-functional fluorescent sensor for sensitive detection of baicalein and temperature. Spectrochim Acta A Mol Biomol Spectrosc 221:117161. https://doi.org/10.1016/j.saa.2019.117161

    Article  CAS  PubMed  Google Scholar 

  148. Wu F, Yang M, Zhang H, Zhu S, Zhu X, Wang K (2018) Facile synthesis of sulfur-doped carbon quantum dots from vitamin B1 for highly selective detection of Fe3+ ion. Opt Mater 77:258–263. https://doi.org/10.1016/j.optmat.2018.01.048

    Article  CAS  Google Scholar 

  149. Liu Y, Zhang F, He X, Ma P, Huang Y, Tao S, Sun Y, Wang X, Song D (2019) A novel and simple fluorescent sensor based on AgInZnS QDs for the detection of protamine and trypsin and imaging of cells. Sens Actuators B Chem 294:263–269. https://doi.org/10.1016/j.snb.2019.05.057

    Article  CAS  Google Scholar 

  150. Amin RM, Elfeky SA, Verwanger T, Krammer B (2017) Fluorescence-based CdTe nanosensor for sensitive detection of cytochrome C. Biosens Bioelectron 98:415–420. https://doi.org/10.1016/j.bios.2017.07.020

    Article  CAS  PubMed  Google Scholar 

  151. Liang Y, Huang X, Yu R, Zhou Y, Xiong Y (2016) Fluorescence ELISA for sensitive detection of ochratoxin A based on glucose oxidase-mediated fluorescence quenching of CdTe QDs. Anal Chim Acta 936:195–201. https://doi.org/10.1016/j.aca.2016.06.018

    Article  CAS  PubMed  Google Scholar 

  152. Yang X, Liu X, Gu B, Liu H, Xiao R, Wang C, Wang S (2020) Quantitative and simultaneous detection of two inflammation biomarkers via a fluorescent lateral flow immunoassay using dual-color SiO2@ QD nanotags. Microchim Acta 187:1–11. https://doi.org/10.1007/s00604-020-04555-6

    Article  CAS  Google Scholar 

  153. Li M, Zhou X, Guo S, Wu N (2013) Detection of lead (II) with a “turn-on” fluorescent biosensor based on energy transfer from CdSe/ZnS quantum dots to graphene oxide. Biosens Bioelectron 43:69–74. https://doi.org/10.1016/j.bios.2012.11.039

    Article  CAS  PubMed  Google Scholar 

  154. Liu J, Bao C, Zhong X, Zhao C, Zhu L (2010) Highly selective detection of glutathione using a quantum-dot-based OFF–ON fluorescent probe. Chem Commun 46:2971–2973. https://doi.org/10.1039/B924299F

    Article  CAS  Google Scholar 

  155. Vinayaka A, Thakur M (2010) Focus on quantum dots as potential fluorescent probes for monitoring food toxicants and foodborne pathogens. Anal Bioanal Chem 397:1445–1455. https://doi.org/10.1007/s00216-010-3683-y

    Article  CAS  PubMed  Google Scholar 

  156. Yan X, Li H, Li Y, Su X (2014) Visual and fluorescent detection of acetamiprid based on the inner filter effect of gold nanoparticles on ratiometric fluorescence quantum dots. Anal Chim Acta 852:189–195. https://doi.org/10.1016/j.aca.2014.09.008

    Article  CAS  PubMed  Google Scholar 

  157. Feng S, Lv J, Pei F, Lv X, Wu Y, Hao Q, Zhang Y, Tong Z, Lei W (2020) Fluorescent MoS2 QDs based on IFE for turn-off determination of FOX-7 in real water samples. Spectrochim Acta A Mol Biomol Spectrosc 231:118131. https://doi.org/10.1016/j.saa.2020.118131

    Article  CAS  PubMed  Google Scholar 

  158. Frasco MF, Chaniotakis N (2010) Bioconjugated quantum dots as fluorescent probes for bioanalytical applications. Anal Bioanal Chem 396:229–240. https://doi.org/10.1007/s00216-009-3033-0

    Article  CAS  PubMed  Google Scholar 

  159. Paramanik B, Bhattacharyya S, Patra A (2013) Detection of Hg2+ and F- Ions by Using fluorescence switching of quantum dots in an Au-Cluster–CdTe QD nanocomposite. Chem A Euro J 19:5980–5987. https://doi.org/10.1002/chem.201203576

    Article  CAS  Google Scholar 

  160. Srivastava RR, Singh VK, Srivastava A (2020) Facile synthesis of highly fluorescent water-soluble SnS2 QDs for effective detection of Fe3+ and unveiling its fluorescence quenching mechanism. Opt Mater 109:110337. https://doi.org/10.1016/j.optmat.2020.110337

    Article  CAS  Google Scholar 

  161. Kairdolf BA, Qian X, Nie S (2017) Bioconjugated nanoparticles for biosensing, in vivo imaging, and medical diagnostics. Anal Chem 89:1015–1031. https://doi.org/10.1021/acs.analchem.6b04873

    Article  CAS  PubMed  Google Scholar 

  162. Esteve-Turrillas FA, Abad-Fuentes A (2013) Applications of quantum dots as probes in immunosensing of small-sized analytes. Biosens Bioelectron 41:12–29. https://doi.org/10.1016/j.bios.2012.09.025

    Article  CAS  PubMed  Google Scholar 

  163. Mao G, Peng W, Tian S, Zheng J, Ji X, He Z (2019) Dual-protein visual detection using ratiometric fluorescent probe based on Rox-DNA functionalized CdZnTeS QDs. Sens Actuators B Chem 283:755–760. https://doi.org/10.1016/j.snb.2018.12.065

    Article  CAS  Google Scholar 

  164. Su S, Fan J, Xue B, Yuwen L, Liu X, Pan D, Fan C, Wang L (2014) DNA-conjugated quantum dot nanoprobe for high-sensitivity fluorescent detection of DNA and micro-RNA. ACS Appl Mater Interfaces 6:1152–1157. https://doi.org/10.1021/am404811j

    Article  CAS  PubMed  Google Scholar 

  165. Bhardwaj N, Bhardwaj SK, Nayak MK, Mehta J, Kim K-H, Deep A (2017) Fluorescent nanobiosensors for the targeted detection of foodborne bacteria. TrAC Trends Anal Chem 97:120–135. https://doi.org/10.1016/j.trac.2017.09.010

    Article  CAS  Google Scholar 

  166. Sun B, Xie W, Yi G, Chen D, Zhou Y, Cheng J (2001) Microminiaturized immunoassays using quantum dots as fluorescent label by laser confocal scanning fluorescence detection. J Immunol Methods 249:85–89. https://doi.org/10.1016/S0022-1759(00)00331-8

    Article  CAS  PubMed  Google Scholar 

  167. Wang Z, Zhang Y, Zhang B, Lu X (2018) Mn2+ doped ZnS QDs modified fluorescence sensor based on molecularly imprinted polymer/sol-gel chemistry for detection of Serotonin. Talanta 190:1–8. https://doi.org/10.1016/j.talanta.2018.07.065

    Article  CAS  PubMed  Google Scholar 

  168. Gore AH, Vatre SB, Anbhule PV, Han S-H, Patil SR, Kolekar GB (2013) Direct detection of sulfide ions [S2−] in aqueous media based on fluorescence quenching of functionalized CdS QDs at trace levels: analytical applications to environmental analysis. Analyst 138:1329–1333. https://doi.org/10.1039/C3AN36825D

    Article  CAS  PubMed  Google Scholar 

  169. Jia L, Xu J-P, Li D, Pang S-P, Fang Y, Song Z-G, Ji J (2010) Fluorescence detection of alkaline phosphatase activity with β-cyclodextrin-modified quantum dots. Chem Commun 46:7166–7168. https://doi.org/10.1039/C0CC01244K

    Article  CAS  Google Scholar 

  170. Yu J, Wang X, Kang Q, Li J, Shen D, Chen L (2017) One-pot synthesis of a quantum dot-based molecular imprinting nanosensor for highly selective and sensitive fluorescence detection of 4-nitrophenol in environmental waters. Environ Sci Nano 4:493–502. https://doi.org/10.1039/C6EN00395H

    Article  CAS  Google Scholar 

  171. Hu T, Xu J, Ye Y, Han Y, Li X, Wang Z, Sun D, Zhou Y, Ni Z (2019) Visual detection of mixed organophosphorous pesticide using QD-AChE aerogel based microfluidic arrays sensor. Biosens Bioelectron 136:112–117. https://doi.org/10.1016/j.bios.2019.04.036

    Article  CAS  PubMed  Google Scholar 

  172. Yu X, Hu L, Zhang F, Wang M, Xia Z, Wei W (2018) MoS2 quantum dots modified with a labeled molecular beacon as a ratiometric fluorescent gene probe for FRET based detection and imaging of microRNA. Microchim Acta 185:1–8. https://doi.org/10.1007/s00604-018-2773-y

    Article  CAS  Google Scholar 

  173. Zhou L, Ji F, Zhang T, Wang F, Li Y, Yu Z, Jin X, Ruan B (2019) An fluorescent aptasensor for sensitive detection of tumor marker based on the FRET of a sandwich structured QDs-AFP-AuNPs. Talanta 197:444–450. https://doi.org/10.1016/j.talanta.2019.01.012

    Article  CAS  PubMed  Google Scholar 

  174. Oh E, Hong M-Y, Lee D, Nam S-H, Yoon HC, Kim H-S (2005) Inhibition assay of biomolecules based on fluorescence resonance energy transfer (FRET) between quantum dots and gold nanoparticles. J Am Chem Soc 127:3270–3271. https://doi.org/10.1021/ja0433323

    Article  CAS  PubMed  Google Scholar 

  175. Dennis AM, Bao G (2008) Quantum dot− fluorescent protein pairs as novel fluorescence resonance energy transfer probes. Nano Lett 8:1439–1445. https://doi.org/10.1021/nl080358+

    Article  CAS  PubMed  Google Scholar 

  176. Clapp AR, Medintz IL, Uyeda HT, Fisher BR, Goldman ER, Bawendi MG, Mattoussi H (2005) Quantum dot-based multiplexed fluorescence resonance energy transfer. J Am Chem Soc 127:18212–18221. https://doi.org/10.1021/ja054630i

    Article  CAS  PubMed  Google Scholar 

  177. Harris DC (2010) Quantitative chemical analysis, 8th edition ed., W.H. Freeman and Co. , New York, p 8. https://www.britannica.com/science/quantitative-chemical-analysis

  178. Clapp AR, Medintz IL, Mattoussi H (2006) Förster resonance energy transfer investigations using quantum-dot fluorophores. Chemphyschem 7:47–57. https://doi.org/10.1002/cphc.200500217

    Article  CAS  PubMed  Google Scholar 

  179. Chen H, Lin L, Li H, Lin J-M (2014) Quantum dots-enhanced chemiluminescence: mechanism and application. Coord Chem Rev 263:86–100. https://doi.org/10.1016/j.ccr.2013.07.013

    Article  CAS  Google Scholar 

  180. Lin Y, Dai Y, Sun Y, Ding C, Sun W, Zhu X, Liu H, Luo C (2018) A turn-on chemiluminescence biosensor for selective and sensitive detection of adenosine based on HKUST-1 and QDs-luminol-aptamer conjugates. Talanta 182:116–124. https://doi.org/10.1016/j.talanta.2018.01.065

    Article  CAS  PubMed  Google Scholar 

  181. Liu J, Chen H, Lin Z, Lin J-M (2010) Preparation of surface imprinting polymer capped Mn-doped ZnS quantum dots and their application for chemiluminescence detection of 4-nitrophenol in tap water. Anal Chem 82:7380–7386. https://doi.org/10.1021/ac101510b

    Article  CAS  PubMed  Google Scholar 

  182. Liu H, Su Y, Deng D, Song H, Lv Y (2019) Chemiluminescence of oleic acid capped black phosphorus quantum dots for highly selective detection of sulfite in PM2.5. Anal Chem 91:9174–9180. https://doi.org/10.1021/acs.analchem.9b01927

    Article  CAS  PubMed  Google Scholar 

  183. Hao Q, Wang L, Niu S, Ding C, Luo X (2020) Ratiometric electrogenerated chemiluminescence sensor based on a designed anti-fouling peptide for the detection of carcinoembryonic antigen. Anal Chim Acta 1136:134–140. https://doi.org/10.1016/j.aca.2020.09.033

    Article  CAS  PubMed  Google Scholar 

  184. Jou AF, Lu CH, Ou YC, Wang SS, Hsu SL, Willner I, Ho JA (2015) Diagnosing the miR-141 prostate cancer biomarker using nucleic acid-functionalized CdSe/ZnS QDs and telomerase. Chem Sci 6:659–665. https://doi.org/10.1039/C4SC02104E

    Article  CAS  PubMed  Google Scholar 

  185. Hassanzadeh J, Khataee A, Oskoei YM, Fattahi H, Bagheri N (2017) Selective chemiluminescence method for the determination of trinitrotoluene based on molecularly imprinted polymer-capped ZnO quantum dots. New J Chem 41:10659–10667. https://doi.org/10.1039/C7NJ01802A

    Article  CAS  Google Scholar 

  186. Huang X, Ren J (2012) Nanomaterial-based chemiluminescence resonance energy transfer: a strategy to develop new analytical methods. TrAC Trends Anal Chem 40:77–89. https://doi.org/10.1016/j.trac.2012.07.014

    Article  CAS  Google Scholar 

  187. Freeman R, Liu X, Willner I (2011) Chemiluminescent and chemiluminescence resonance energy transfer (CRET) detection of DNA, metal ions, and aptamer–substrate complexes using hemin/G-quadruplexes and CdSe/ZnS quantum dots. J Am Chem Soc 133:11597–11604. https://doi.org/10.1021/ja202639m

    Article  CAS  PubMed  Google Scholar 

  188. Zhao S, Huang Y, Shi M, Liu R, Liu Y-M (2010) Chemiluminescence resonance energy transfer-based detection for microchip electrophoresis. Anal Chem 82:2036–2041. https://doi.org/10.1021/ac9027643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Zhou Z-M, Yu Y, Zhao Y-D (2012) A new strategy for the detection of adenosine triphosphate by aptamer/quantum dot biosensor based on chemiluminescence resonance energy transfer. Analyst 137:4262–4266. https://doi.org/10.1039/C2AN35520E

    Article  CAS  PubMed  Google Scholar 

  190. Geißler D, Hildebrandt N (2016) Recent developments in Förster resonance energy transfer (FRET) diagnostics using quantum dots. Anal Bioanal Chem 408:4475–4483. https://doi.org/10.1007/s00216-016-9434-y

    Article  CAS  PubMed  Google Scholar 

  191. Dong S, Liu F, Lu C (2013) Organo-modified hydrotalcite-quantum dot nanocomposites as a novel chemiluminescence resonance energy transfer probe. Anal Chem 85:3363–3368. https://doi.org/10.1021/ac400041t

    Article  CAS  PubMed  Google Scholar 

  192. Huang X, Li L, Qian H, Dong C, Ren J (2006) A resonance energy transfer between chemiluminescent donors and luminescent quantum-dots as acceptors (CRET). Angew Chem Int Ed 45:5140–5143. https://doi.org/10.1002/anie.200601196

    Article  CAS  Google Scholar 

  193. Lakowicz J (1999) Principles of Fluorescence Spectroscopy, 2nd edn. Springer, Boston, MA

    Book  Google Scholar 

  194. Kuijt J, Ariese F, Udo AT, Gooijer C (2003) Room temperature phosphorescence in the liquid state as a tool in analytical chemistry. Anal Chim Acta 488:135–171. https://doi.org/10.1016/S0003-2670(03)00675-5

    Article  CAS  Google Scholar 

  195. Leventis N (2005) Electrogenerated Chemiluminescence Edited by Allen J. Bard (University of Texas at Austin). Marcel Dekker, Inc.: New York. 2004. viii+ 540 pp. $165.00. ISBN 0-8247-5347-X, ACS Publications

  196. Li Y, Li R, Zhu Z, Liu J, Pan P, Qi Y, Yang Z (2022) Electrochemiluminescence detection of Cu2+ ions by nitrogen-doped carbon quantum dots and zinc oxide composites. Microchem J 183:108073. https://doi.org/10.1016/j.microc.2022.108073

    Article  CAS  Google Scholar 

  197. Hu S, Qin D, Meng S, Wu Y, Luo Z, Deng B (2022) Cathodic electrochemiluminescence based on resonance energy transfer between sulfur quantum dots and dopamine quinone for the detection of dopamine. Microchem J 181:107776. https://doi.org/10.1016/j.microc.2022.107776

    Article  CAS  Google Scholar 

  198. Sharma A, Rao VK, Kamboj DV, Gaur R, Upadhyay S, Shaik M (2015) Relative efficiency of zinc sulfide (ZnS) quantum dots (QDs) based electrochemical and fluorescence immunoassay for the detection of Staphylococcal enterotoxin B (SEB). Biotechnol Rep 6:129–136. https://doi.org/10.1016/j.btre.2015.02.004

    Article  Google Scholar 

  199. Baluta S, Lesiak A, Cabaj J (2018) Graphene quantum dots-based electrochemical biosensor for catecholamine neurotransmitters detection. Electroanalysis 30:1781–1790. https://doi.org/10.1002/elan.201700825

    Article  CAS  Google Scholar 

  200. Shereema RM, Rao TP, Kumar VS, Sruthi T, Vishnu R, Prabhu G, Shankar SS (2018) Individual and simultaneous electrochemical determination of metanil yellow and curcumin on carbon quantum dots based glassy carbon electrode. Mater Sci Eng C 93:21–27. https://doi.org/10.1016/j.msec.2018.07.055

    Article  CAS  Google Scholar 

  201. Hasanpour F, Nekoeinia M, Semnani A, Shojaei S (2018) NiMnO3 nanoparticles anchored on graphene quantum dot: Application in sensitive electroanalysis of dobutamine. Microchem J 142:17–23. https://doi.org/10.1016/j.microc.2018.06.014

    Article  CAS  Google Scholar 

  202. Shahdost-Fard F, Roushani M (2016) Conformation switching of an aptamer based on cocaine enhancement on a surface of modified GCE. Talanta 154:7–14. https://doi.org/10.1016/j.talanta.2016.03.055

    Article  CAS  PubMed  Google Scholar 

  203. Hasanzadeh M, Hashemzadeh N, Shadjou N, Eivazi-Ziaei J, Khoubnasabjafari M, Jouyban A (2016) Sensing of doxorubicin hydrochloride using graphene quantum dot modified glassy carbon electrode. J Mol Liq 221:354–357. https://doi.org/10.1016/j.molliq.2016.05.082

    Article  CAS  Google Scholar 

  204. Rather JA, Pilehvar S, De Wael K (2014) A graphene oxide amplification platform tagged with tyrosinase–zinc oxide quantum dot hybrids for the electrochemical sensing of hydroxylated polychlorobiphenyls. Sens Actuators B Chem 190:612–620. https://doi.org/10.1016/j.snb.2013.09.018

    Article  CAS  Google Scholar 

  205. Mohammadi-Behzad L, Gholivand MB, Shamsipur M, Gholivand K, Barati A, Gholami A (2016) Highly sensitive voltammetric sensor based on immobilization of bisphosphoramidate-derivative and quantum dots onto multi-walled carbon nanotubes modified gold electrode for the electrocatalytic determination of olanzapine. Mater Sci Eng C 60:67–77. https://doi.org/10.1016/j.msec.2015.10.068

    Article  CAS  Google Scholar 

  206. Ozcelikay G, Kurbanoglu S, Bozal-Palabiyik B, Uslu B, Ozkan SA (2018) MWCNT/CdSe quantum dot modified glassy carbon electrode for the determination of clopidogrel bisulfate in tablet dosage form and serum samples. J Electroanal Chem 827:51–57. https://doi.org/10.1016/j.jelechem.2018.09.005

    Article  CAS  Google Scholar 

  207. Ghiasi T, Ahmadi S, Ahmadi E, Olyai MRTB, Khodadadi Z (2021) Novel electrochemical sensor based on modified glassy carbon electrode with graphene quantum dots, chitosan and nickel molybdate nanocomposites for diazinon and optimal design by the Taguchi method. Microchem J 160:105628

    Article  CAS  Google Scholar 

  208. Wei Y, Zhang D, Fang Y, Wang H, Liu Y, Xu Z, Wang S, Guo Y (2019) Detection of ascorbic acid using green synthesized carbon quantum dots. J Sens 2019:1–10

    Article  Google Scholar 

  209. Le TH, Lee HJ, Kim JH, Park SJ (2020) Highly selective fluorescence sensor based on graphene quantum dots for sulfamethoxazole determination. Materials 13:2521. https://doi.org/10.3390/ma13112521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Zhang L, Wang J, Fang G, Deng J, Wang S (2020) A molecularly imprinted polymer capped nitrogen-doped graphene quantum dots system for sensitive determination of tetracycline in animal-derived food. ChemistrySelect 5:839–846. https://doi.org/10.1002/slct.201903868

    Article  CAS  Google Scholar 

  211. Magdy G, Hakiem AFA, Belal F, Abdel-Megied AM (2021) Green one-pot synthesis of nitrogen and sulfur co-doped carbon quantum dots as new fluorescent nanosensors for determination of salinomycin and maduramicin in food samples. Food Chem 343:128539. https://doi.org/10.1016/j.foodchem.2020.128539

    Article  CAS  PubMed  Google Scholar 

  212. Masteri-Farahani M, Mashhadi-Ramezani S, Mosleh N (2020) Molecularly imprinted polymer containing fluorescent graphene quantum dots as a new fluorescent nanosensor for detection of methamphetamine. Spectrochim Acta Part A Mol Biomol Spectrosc 229:118021. https://doi.org/10.1016/j.saa.2019.118021

    Article  CAS  Google Scholar 

  213. Yang X, Tian F, Wen S, Xu H, Zhang L, Zeng J (2021) Selective determination of dopamine in pharmaceuticals and human urine using carbon quantum dots as a fluorescent probe. Processes 9:170. https://doi.org/10.3390/pr9010170

    Article  CAS  Google Scholar 

  214. Muhammad M, Ara B, Ali F, Ahmad I, Ullah H (2021) Mn-Dopped ZnS quantum dots as sensitive sensor for determination of ciprofloxacin in pharmaceutical and biological samples. J Chil Chem Soc 66:5130–5135. https://doi.org/10.4067/S0717-97072021000205130

    Article  CAS  Google Scholar 

  215. Tirbandpaya R, Samadi-Maybodi A (2021) CdSe/ZnS quantum dots as a fluorescence probes for determination of vitamin B1. Res Sq. https://doi.org/10.21203/rs.3.rs-824400/v1

    Article  Google Scholar 

  216. Shekarbeygi Z, Karami C, Esmaeili E, Moradi S, Shahlaei M (2021) Development of Ag nanoparticle-carbon quantum dot nanocomplex as fluorescence sensor for determination of gemcitabine. Spectrochim Acta Part A Mol Biomol Spectrosc 262:120148. https://doi.org/10.1016/j.saa.2021.120148

    Article  CAS  Google Scholar 

  217. Narimani S, Samadi N (2021) Rapid trace analysis of ceftriaxone using new fluorescent carbon dots as a highly sensitive turn-off nanoprobe. Microchem J 168:106372. https://doi.org/10.1016/j.microc.2021.106372

    Article  CAS  Google Scholar 

  218. Yu C, Qin D, Jiang X, Zheng X, Deng B (2021) Facile synthesis of bright yellow fluorescent nitrogen-doped carbon quantum dots and their applications to an off–on probe for highly sensitive detection of methimazole. Microchem J 168:106480. https://doi.org/10.1016/j.microc.2021.106480

    Article  CAS  Google Scholar 

  219. Abdel Hamid MA, Mabrouk MM, Ahmed HM, Samy B, Batakoushy HA (2022) Carbon quantum dots as a sensitive fluorescent probe for quantitation of pregabalin; application to real samples and content uniformity test. Luminescence 37:170–176. https://doi.org/10.1002/bio.4158

    Article  CAS  PubMed  Google Scholar 

  220. El-Malla SF, Elshenawy E, Hammad S, Mansour F (2022) Rapid microwave synthesis of N, S-doped carbon quantum dots as a novel turn off-on sensor for label-free determination of copper and etidronate disodium. Anal Chim Acta 1197:339491. https://doi.org/10.1016/j.aca.2022.339491

    Article  CAS  PubMed  Google Scholar 

  221. Abd Elhaleem SM, Elsebaei F, Shalan S, Belal F (2022) Utilization of N, S-doped carbon dots as a fluorescent nanosensor for determination of cromolyn based on inner filter effect; application to aqueous humor. Luminescence. https://doi.org/10.1002/bio.4212

    Article  PubMed  Google Scholar 

  222. Abd Elhaleem SM, Elsebaei F, Shalan S, Belal F (2022) Turn-off fluorescence of nitrogen and sulfur carbon quantum dots as effective fluorescent probes for determination of imatinib. Application to biological fluids. Spectrochim Acta A Mol Biomol Spectrosc 272:120954. https://doi.org/10.1016/j.saa.2022.120954

    Article  CAS  PubMed  Google Scholar 

  223. Khawla M, Zouhour H, Yves C, Souhaira H, Rym M (2022) ZnS quantum dots as fluorescence sensor for quantitative detection of tetracycline. Opt Mater 125

    Article  CAS  Google Scholar 

  224. Magdy G, Al-enna AA, Belal F, El-Domany RA, Abdel-Megied AM (2022) Application of sulfur and nitrogen doped carbon quantum dots as sensitive fluorescent nanosensors for the determination of saxagliptin and gliclazide. R Soc Open Sci 9:220285. https://doi.org/10.1098/rsos.220285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Li P, Du Y, Ma M, Zhang J (2022) Nitrogen-doped graphene quantum dots coated with molecularly imprinted polymers as a fluorescent sensor for selective determination of warfarin. New J Chem 46:7537–7544. https://doi.org/10.1039/D2NJ00853J

    Article  CAS  Google Scholar 

  226. Lv Y, Cheng Y, Lv K, Zhang G, Wu J (2022) Felodipine determination by a CdTe quantum dot-based fluorescent probe. Micromachines 13:788. https://doi.org/10.3390/mi13050788

    Article  PubMed  PubMed Central  Google Scholar 

  227. Kundu A, Maity B, Basu S (2022) Rice Husk-derived carbon quantum dots-based dual-mode nanoprobe for selective and sensitive detection of Fe3+ and fluoroquinolones. ACS Biomater Sci Eng. https://doi.org/10.1021/acsbiomaterials.2c00798

    Article  PubMed  Google Scholar 

  228. El Sharkasy ME, Tolba MM, Belal F, Walash MI, Aboshabana R (2022) Thiosemicarbazide functionalized carbon quantum dots as a fluorescent probe for the determination of some oxicams: application to dosage forms and biological fluids. RSC Adv 12:13826–13836. https://doi.org/10.1039/d2ra01040b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Wang B, Guo L, Yan X, Hou F, Zhong L, Xu H (2022) Dual-mode detection sensor based on nitrogen-doped carbon dots from pine needles for the determination of Fe3+ and folic acid. Spectrochim Acta A Mol Biomol Spectrosc 121891

  230. Elshenawy EA, El-Malla SF, Hammad SF, Mansour FR (2022) Innovative spectrofluorimetric determination of vildagliptin based on a “switch off/on” NS-doped carbon dot nanosensor. RSC Adv 12:25815–25821. https://doi.org/10.1039/D2RA04991K

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Salam RA, Hadad G, Belal F, Elmansi H (2022) Design-assisted spectrofluorometric method utilizing carbon quantum dots for the quantitation of some calcium channel blockers. J Fluoresc. https://doi.org/10.21203/rs.3.rs-2121894/v1

    Article  PubMed  PubMed Central  Google Scholar 

  232. Ashkar M, Chandhru M, Sundar M, Rani SK, Vasimalai N (2022) The rapid synthesis of intrinsic green-fluorescent poly (pyrogallol)-derived carbon dots for amoxicillin drug sensing in clinical samples. New J Chem 46:18805–18814. https://doi.org/10.1039/d2nj03915j

    Article  CAS  Google Scholar 

  233. Thara C, Korah BK, Mathew S, John BK, Mathew B (2022) Dual mode detection and sunlight-driven photocatalytic degradation of tetracycline with tailor-made N-doped carbon dots. Environ Res 216:114450. https://doi.org/10.1016/j.envres.2022.114450

    Article  CAS  Google Scholar 

  234. Fan Y, Che S, Zhang L, Zhou C, Fu H, She Y (2022) Highly sensitive visual fluorescence sensor for aminoglycoside antibiotics in food samples based on mercaptosuccinic acid-CdTe quantum dots. Food Chem 404:134040. https://doi.org/10.1016/j.foodchem.2022.134040

    Article  CAS  PubMed  Google Scholar 

  235. Dewangan L, Chawre Y, Korram J, Karbhal I, Nagwanshi R, Jain V, Satnami ML (2022) N-doped, silver, and cerium co-doped carbon quantum dots based sensor for detection of Hg2+ and captopril. Microchem J 182:107867. https://doi.org/10.1016/j.microc.2022.107867

    Article  CAS  Google Scholar 

  236. Manshadi SS, Dadfarnia S, Shabani AMH, Afsharipour R, Jabbaran S (2022) S and N co-doped graphene quantum dots as an effective fluorescence probe for sensing of furazolidone after magnetic solid-phase microextraction using magnetic multiwalled carbon nanotubes. Microchem J 179:107439. https://doi.org/10.1016/j.microc.2022.107439

    Article  CAS  Google Scholar 

  237. Magdy G, Said N, El-Domany RA, Belal F (2022) Nitrogen and sulfur-doped carbon quantum dots as fluorescent nanoprobes for spectrofluorimetric determination of olanzapine and diazepam in biological fluids and dosage forms: application to content uniformity testing. BMC Chem 16:1–14

    Article  Google Scholar 

  238. Mili K, Hsine Z, Chevalier Y, Ledoux G, Mlika R (2023) Application of thiol capped ZnS quantum dots as a fluorescence probe for determination of tetracycline residues. Solid State Commun 360:115040

    Article  CAS  Google Scholar 

  239. Guan Y, Zu Y, Ma P, Li S, Ma Q, Song J, Guo Y (2023) Cascade fluorescent determination of Mercury (II) and Captopril Using Tungsten-Nitrogen Doped Carbon Dots. Anal Lett 1–16

  240. Magdy G, Belal F, Elmansi H (2023) Rapid microwave-assisted synthesis of nitrogen-doped carbon quantum dots as fluorescent nanosensors for the spectrofluorimetric determination of palbociclib: application for cellular imaging and selective probing in living cancer cells. RSC Adv 13:4156–4167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Hamid MAA, Elagamy SH, Gamal A, Mansour FR (2023) Microwave prepared nitrogen and sulfur co-doped carbon quantum dots for rapid determination of ascorbic acid through a turn off-on strategy. Spectrochim Acta A Mol Biomol Spectrosc 122440

  242. Sajwan RK, Solanki PR (2023) Gold@ carbon quantum dots nanocomposites based two-in-one sensor: a novel approach for sensitive detection of aminoglycosides antibiotics in food samples. Food Chem 135590

  243. Zhou Z, Zhao P, Wang C, Yang P, Xie Y, Fei J (2020) Ultra-sensitive amperometric determination of quercetin by using a glassy carbon electrode modified with a nanocomposite prepared from aminated graphene quantum dots, thiolated β-cyclodextrin and gold nanoparticles. Microchim Acta 187:1–9. https://doi.org/10.1007/s00604-019-4106-1

    Article  CAS  Google Scholar 

  244. Muthusankar G, Devi RK, Gopu G (2020) Nitrogen-doped carbon quantum dots embedded Co3O4 with multiwall carbon nanotubes: An efficient probe for the simultaneous determination of anticancer and antibiotic drugs. Biosensors and Bioelectronics 150:111947. https://doi.org/10.1016/j.bios.2019.111947

    Article  CAS  PubMed  Google Scholar 

  245. Hatamluyi B, Hashemzadeh A, Darroudi M (2020) A novel molecularly imprinted polymer decorated by CQDs@ HBNNS nanocomposite and UiO-66-NH2 for ultra-selective electrochemical sensing of Oxaliplatin in biological samples. Sens Actuators B Chem 307:127614. https://doi.org/10.1016/j.snb.2019.127614

    Article  CAS  Google Scholar 

  246. Eksin E, Senturk H, Zor E, Bingol H, Erdem A (2020) Carbon quantum dot modified electrodes developed for electrochemical monitoring of Daunorubicin-DNA interaction. J Electroanal Chem 862:114011. https://doi.org/10.1016/j.jelechem.2020.114011

    Article  CAS  Google Scholar 

  247. Lu Z, Li Y, Liu T, Wang G, Sun M, Jiang Y, He H, Wang Y, Zou P, Wang X (2020) A dual-template imprinted polymer electrochemical sensor based on AuNPs and nitrogen-doped graphene oxide quantum dots coated on NiS2/biomass carbon for simultaneous determination of dopamine and chlorpromazine. Chem Eng J 389:124417. https://doi.org/10.1016/j.cej.2020.124417

    Article  CAS  Google Scholar 

  248. Bakirhan NK, Kaya SI, Ozkan SA (2021) Basics of electroanalytical methods and their applications with quantum dot sensors. Elsevier, London. https://doi.org/10.1016/C2019-0-04090-3

    Book  Google Scholar 

  249. Wang J, Liu C, Hua J (2021) Au-Ag nanoparticles-graphene quantum dots as sensor for highly sensitive electrochemical determination of insulin level in pharmaceutical samples. Int J Electrochem Sci 16:2. https://doi.org/10.20964/2021.10.15

    Article  CAS  Google Scholar 

  250. Afshary H, Amiri M, Bezaatpour A, Wark M (2022) Electrochemiluminescence Sensor Based on N-Doped Carbon Quantum Dots for Determination of Ceftazidime in Real Samples. J Electrochem Soc 169:026523. https://doi.org/10.1149/1945-7111/ac53ce

    Article  CAS  Google Scholar 

  251. Chul Lim H, Jang SJ, Cho Y, Cho H, Venkataprasad G, Vinothkumar V, Shin IS, Hyun Kim T (2022) Graphene Quantum Dot-Doped PEDOT for simultaneous determination of ascorbic acid, dopamine, and uric acid. ChemElectroChem 9:e202200557. https://doi.org/10.1002/celc.202200557

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Fathalla Belal: Conceptualization, Review & editing, Supervision. Mokhtar Mabrouk: Conceptualization, Review & editing, Supervision. Sherin Hammad: Conceptualization, Review & editing, Supervision. Aya Barseem: Conceptualization, Visualization, Writing - original draft. Hytham Ahmed: Conceptualization, Review & editing, Supervision.

Corresponding author

Correspondence to Aya Barseem.

Ethics declarations

Ethical Approval

Not applicable

Competing Interests

No conflicts of interest are declared by the authors and responsible for the material and writing.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belal, F., Mabrouk, M., Hammad, S. et al. Recent Applications of Quantum Dots in Pharmaceutical Analysis. J Fluoresc 34, 119–138 (2024). https://doi.org/10.1007/s10895-023-03276-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-023-03276-2

Keywords

Navigation