Skip to main content
Log in

Sonochemical Synthesized Manganese Oxide Nanoparticles as Fluorescent Sensor for Selenium (IV) Quantification. Application to Food and Drink Samples

  • RESEARCH
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Manganese oxide nanoparticles (MnO Nps), sonochemical synthesized and characterized in our laboratory, are proposed as fluorescent sensor for selenium (Se) determination. The new methodology has been developed based on the enhancing effect of the Se(IV) on fluorescent emission of MnO Nps. Experimental variables that influence on fluorimetric sensitivity were optimized. The calibration graph using zeroth order regression was linear from 0.189 ng L−1 to 8.00 × 103 µg L−1, with correlation coefficient better than 0.99. Under the optimal conditions, the limits of detection and quantification were of 0.062 ng L−1 and 0.189 ng L−1, respectively. The trueness of the methodology was assessed through standard addition method obtaining recovery near to 100%. This method showed good tolerance to foreign ions, particularly to Se(VI), and was applied to determination of Se(IV) trace in food and drink samples with satisfactory results. With the intention of preserving the environment from harmful effects, a degradation study of the used nanomaterials has been included for their subsequent disposal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Avery JC, Hoffmann PR (2018) Selenium, selenoproteins, and immunity. Nutrients 10:1203

    Article  PubMed  PubMed Central  Google Scholar 

  2. Abdillah A, Sonawane PM, Kim D, Mametov D, Shimodaira S, Park Y, Churchill DG (2021) Discussions of fluorescence in selenium chemistry: Recently reported probes, particles, and a clearer biological knowledge. Molecules 26:692

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Shreenath AP, Ameer MA, Dooley J (2021) Selenium deficiency. In: StatPearls. Treasure Island (FL): StatPearls Publishing LLC, NCBI Bookshelf ID: NBK482260PMID: 29489289

  4. Bae M, Kim H (2020) Mini-Review on the roles of vitamin C, vitamin D, and selenium in the immune system against COVID-19. Molecules 25:5346

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Souza SO, Ávila DVL, Cerdà V, Araujo RGO (2022) Selenium inorganic speciation in beers using MSFIA-HG-AFS system after multivariate optimization. Food Chem 367:130673

    Article  PubMed  CAS  Google Scholar 

  6. Atasoy M, Kula I (2022) Speciation and determination of inorganic selenium species in certain fish and food samples by gold-coated W-coil atom trap hydride generation atomic absorption spectrometry. Food Chem 369:130938

    Article  PubMed  CAS  Google Scholar 

  7. de Santana FA, Portugal LA, Serra AM, Ferrer L, Cerdà V, Ferreira SLC (2016) Development of a MSFIA system for sequential determination of antimony, arsenic and selenium using hydride generation atomic fluorescence spectrometry. Talanta 156–157:29–33

    Article  PubMed  Google Scholar 

  8. Dilli S, Sutikno I (1984) Analysis of selenium at the ultra-trace level by gas chromatography. J Chromatogr A 300:265–302

    Article  CAS  Google Scholar 

  9. González-Nieto J, López-Sánchez JF, Rubio R (2006) Comparison of chemical modifiers for selenium determination in soil aqua regia extracts by ZETAAS. Talanta 69:1118–1122

    Article  PubMed  Google Scholar 

  10. Soruraddin MH, Heydari R, Puladvand M, Zahedi MM (2011) A new spectrophotometric method for determination of selenium in cosmetic and pharmaceutical preparations after preconcentration with cloud point extraction. Int J Anal Chem 2011:729651

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kim IJ, Watson RP, Lindstrom RM (2011) Accurate and precise measurement of selenium by instrumental neutron activation analysis. Anal Chem 83:3493–3498

    Article  PubMed  CAS  Google Scholar 

  12. Pedro J, Andrade F, Magni D, Tudino M, Bonivardi A (2004) On-line submicellar enhanced fluorometric determination of Se(IV) with 2,3-diaminonaphthalene. Anal Chim Acta 516:229–236

    Article  CAS  Google Scholar 

  13. Santarossa DG, Fernández LP (2017) Development of on-line spectrofluorimetric methodology for selenium monitoring in foods and biological fluids using Chrome azurol S quenching. Talanta 172:31–36

    Article  PubMed  CAS  Google Scholar 

  14. Segura R, Pizarro J, Díaz K, Placencio A, Godoy F, Pino E, Recio F (2015) Development of electrochemical sensors for the determination of selenium using gold nanoparticles modified electrodes. Sens Actuators B 220:263–269

    Article  CAS  Google Scholar 

  15. Shrivas K, Patel DK (2011) Ultrasound assisted-hollow fibre liquid-phase microextraction for the determination of selenium in vegetable and fruit samples by using GFAAS. Food Chem 124:1673–1677

    Article  CAS  Google Scholar 

  16. Zou A, Shen K, Wang C, Wang J (2022) Molecular recognition and quantitative analysis of free and combinative selenium speciation in selenium-enriched millets using HPLC-ESI-MS/MS. J Food Compos Anal 106:104333

    Article  CAS  Google Scholar 

  17. Carpenter MA, Mathur S, Kolmakov A (2013) Metal oxide nanomaterials for chemical sensors, 1st ed., Springer Science & Business Media: New York, NY, USA

  18. Guo T, Yao MS, Lin YH, Nan CW (2015) A comprehensive review on synthesis methods for transition-metal oxide nanostructures. Cryst Eng Comm 17:3551–3585

    Article  CAS  Google Scholar 

  19. Afzal A, Dickert FL (2018) Imprinted oxide and MIP/oxide hybrid nanomaterials for chemical sensors. Nanomaterials (Basel) 8(4):257–283

    Article  PubMed  Google Scholar 

  20. Claros M, Kuta J, El-Dahshan O, Michalička J, Jimenez YP, Vallejos S (2021) Hydrothermally synthesized MnO2 nanowires and their application in lead (II) and copper (II) batch adsorption. J Mol Liq 325:115203

    Article  CAS  Google Scholar 

  21. Gnanasekaran L, Hemamalini R, Saravanan R, Ravichandran K, Gracia F, Agarwal S, Gupta VK (2017) Synthesis and characterization of metal oxides (CeO2, CuO, NiO, Mn3O4, SnO2 and ZnO) nanoparticles as photo catalysts for degradation of textile dyes. J Photochem Photobiol B 173:43–49

    Article  PubMed  CAS  Google Scholar 

  22. Manimaran M, Kannabiran K (2017) Actinomycetes-mediated biogenic synthesis of metal and metal oxide nanoparticles: progress and challenges. Lett Appl Microbiol 64:401–408

    Article  PubMed  CAS  Google Scholar 

  23. Sankar S, Inamdar AI, Im H, Lee S, Kim DY (2018) Template-free rapid sonochemical synthesis of spherical α-MnO2 nanoparticles for high-energy supercapacitor electrode. Ceram Int 44:17514–17521

    Article  CAS  Google Scholar 

  24. Deng RR, Xie XJ, Vendrell M, Chang YT, Liu XG (2011) Intracellular glutathione detection using MnO2-nanosheet-modified upconversion nanoparticles. J Am Chem Soc 133:20168–20171

    Article  PubMed  CAS  Google Scholar 

  25. Yuan YX, Wu SF, Shu F, Liu ZH (2014) An MnO2 nanosheet as a label-free nanoplatform for homogeneous biosensing. Chem Commun 50:1095–1097

    Article  CAS  Google Scholar 

  26. Zhai WY, Wang CX, Yu P, Wang YX, Mao LQ (2014) Single-Layer MnO2 nanosheets suppressed fluorescence of 7-hydroxycoumarin: mechanistic study and application for sensitive sensing of ascorbic acid in vivo. Anal Chem 86:12206–12213

    Article  PubMed  CAS  Google Scholar 

  27. Zhang XL, Zheng C, Guo SS, Li J, Yang HH, Chen GN (2014) Turn-on fluorescence sensor for intracellular imaging of glutathione using g C3N4 nanosheet−MnO2 sandwich nanocomposite. Anal Chem 86:3426–3434

    Article  PubMed  CAS  Google Scholar 

  28. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Henn AS, Rondan FS, Mesko MF, Mello PA, Perez M, Armstrong J, Bullock LA, Parnell J, Feldmann J, Flores EM (2018) Determination of Se at low concentration in coal by collision/reaction cell technology inductively coupled plasma mass spectrometry. Spectrochimica Acta Part B 143:48–54

    Article  CAS  Google Scholar 

  30. Karasiński J, Tupys A, Yang L, Mester Z, Halicz L, Bulska E (2020) Novel approach for the accurate determination of Se isotope ratio by multicollector ICP-MS. Anal Chem 92:16097–16104

    Article  PubMed  PubMed Central  Google Scholar 

  31. Jeffery J, Frank AR, Hockridge S, Stosnach H, Costelloe SJ (2019) Method for measurement of serum copper, zinc and selenium using total reflection X-ray fluorescence spectroscopy on the PICOFOX analyser: Validation and comparison with atomic absorption spectroscopy and inductively coupled plasma mass spectrometry. Ann Clin Biochem 56(1):170–178

    Article  PubMed  CAS  Google Scholar 

  32. Vongkul A, Dejmanee S (2013) Determination of selenium in milk by graphite furnace atomic absorption spectrometry. Asian J Chem 25:10007–10010

    Article  CAS  Google Scholar 

  33. Welz B, Becker-Ross H, Florek S, Heitmann U (2005) High-resolution continuum source AAS: The better way to do atomic absorption spectrometry, 1st ed., Wiley–VCH, Weinheim, Germany

Download references

Acknowledgements

Authors gratefully thank to Instituto de Química San Luis—Consejo Nacional de Investigaciones Científicas y Tecnológicas (INQUISAL CONICET, Project 11220130100605CO) and Universidad Nacional de San Luis (Project PROICO 02-1120), Argentina, for the financial support.

Funding

This work was supported by Instituto de Química San Luis—Consejo Nacional de Investigaciones Científicas y Tecnológicas (INQUISAL CONICET, Project 11220130100605CO) and Universidad Nacional de San Luis (Project PROICO 02–1120).

Author information

Authors and Affiliations

Authors

Contributions

Maria Carolina Talio, and Mariano Acosta and carried out the laboratory experiences, the calculations and the tables. Maria Carolina Talio y Liliana Patricia Fernández wrote the main manuscript text and Mariano Acosta prepared all the figures. All authors reviewed the manuscript.

Corresponding author

Correspondence to Maria Carolina Talio.

Ethics declarations

Ethical Approval and Consent to Participate

Not applicable. This manuscript does not contain any studies with human participants or animals performed by any of the authors.

Consent to Publish

Not applicable. This manuscript does not contain any individual person’s data in any form.

Conflict of Interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Acosta, M., Fernández, L.P. & Talio, M.C. Sonochemical Synthesized Manganese Oxide Nanoparticles as Fluorescent Sensor for Selenium (IV) Quantification. Application to Food and Drink Samples. J Fluoresc 33, 2479–2488 (2023). https://doi.org/10.1007/s10895-023-03247-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-023-03247-7

Keywords

Navigation