Skip to main content

Specific Applications of II–VI Semiconductor Nanomaterials-Based Biosensors for Food Analysis and Food Safety

  • Chapter
  • First Online:
Handbook of II-VI Semiconductor-Based Sensors and Radiation Detectors

Abstract

II–VI semiconducting nanomaterials have been attracting a great deal of interests in sensors and biosensors development for decades owing to their excellent optical, catalytic, sensing and electrochemical properties, etc, especially for food analysis and food safety field in recent years. In this book chapter, we comprehensively introduce and analyze the recent progress of II–VI semiconducting nanomaterials in food analysis and food safety. More importantly, we discuss the application and analytical performance of different types of II–VI semiconducting nanomaterials like zinc sulfide (ZnS), cadmium selenide (CdSe), etc, in certain food matrix. In addition, challenges and limitations of such sensing platforms were commented for their versatile value. Ultimately, conclusion and future prospects were summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agarwal C, Csóka L. Functionalization of wood/plant-based natural cellulose fibers with nanomaterials: a review. TAPPI J. 2018;17(2):92–111. https://doi.org/10.32964/tj17.02.92.

    Article  Google Scholar 

  2. Albalghiti E, Stabryla LM, Gilbertson LM, Zimmerman JB. Towards resolution of antibacterial mechanisms in metal and metal oxide nanomaterials: a meta-analysis of the influence of study design on mechanistic conclusions. Environ Sci Nano. 2021;8(1):37–66. https://doi.org/10.1039/d0en00949k.

    Article  Google Scholar 

  3. Aminloo ES, Montazer M. Clean sono-synthesis of ZnO on cotton/nylon fabric using dopamine: photocatalytic, hydrophilic, antibacterial features. Fibers Polym. 2021;22(1):97–108. https://doi.org/10.1007/s12221-021-9237-4.

    Article  Google Scholar 

  4. Amjadi M, Jalili R, Manzoori J. A sensitive fluorescent nanosensor for chloramphenicol based on molecularly imprinted polymer-capped CdTe quantum dots. Luminescence. 2015;31:633–9. https://doi.org/10.1002/bio.3003.

    Article  Google Scholar 

  5. Arshad E, Anas A, Asok A, Jasmin C, Pai SS, Singh IB, et al. Fluorescence detection of the pathogenic bacteria Vibrio harveyi in solution and animal cells using semiconductor quantum dots. RSC Adv. 2016;6(19):15686–93. https://doi.org/10.1039/c5ra24161h.

    Article  ADS  Google Scholar 

  6. Azmy NAN, Bakar AAA, Arsad N, Idris S, Mohmad AR, Hamid AA. Enhancement of ZnO-rGO nanocomposite thin films by gamma radiation for E. coli sensor. Appl Surf Sci. 2017;392:1134–43. https://doi.org/10.1016/j.apsusc.2016.09.144.

    Article  ADS  Google Scholar 

  7. Chaudhary P, Fatima F, Kumar A. Relevance of nanomaterials in food packaging and its advanced future prospects. J Inorg Organomet Polym Mater. 2020;30(12):5180–92. https://doi.org/10.1007/s10904-020-01674-8.

    Article  Google Scholar 

  8. Chauhan N, Saxena K, Tikadar M, Jain U. Recent advances in the design of biosensors based on novel nanomaterials: an insight. Nanotechnol Precis Eng. 2021;4(4):045003. https://doi.org/10.1063/10.0006524.

    Article  Google Scholar 

  9. Chen Y, Fu Q, Xie J, Wang H, Tang Y. Development of a high sensitivity quantum dot-based fluorescent quenching lateral flow assay for the detection of zearalenone. Anal Bioanal Chem. 2019;411:2169–75. https://doi.org/10.1007/s00216-019-01652-1.

    Article  Google Scholar 

  10. Chikte RG, Paknikar KM, Rajwade JM, Sharma J. Nanomaterials for the control of bacterial blight disease in pomegranate: quo vadis? Appl Microbiol Biotechnol. 2019;103(11):4605–21. https://doi.org/10.1007/s00253-019-09740-z.

    Article  Google Scholar 

  11. Demirkol DO, Timur S. A sandwich-type assay based on quantum dot/aptamer bioconjugates for analysis of E. coli O157: H7 in microtiter plate format. Int J Polym Mater Polym Biomater. 2016;65(2):85–90. https://doi.org/10.1080/00914037.2015.1074906.

    Article  Google Scholar 

  12. Díez-Pascual AM. Sustainable green nanocomposites from bacterial bioplastics for food-packaging applications. In: Handbook of composites from renewable materials, Nanocomposites: advanced applications, vol. 8. Hoboken: Wiley; 2017. p. 229.

    Google Scholar 

  13. Guo L, Shao Y, Duan H, Ma W, Leng Y, Huang X, et al. Magnetic quantum dot Nanobead-based fluorescent immunochromatographic assay for the highly sensitive detection of aflatoxin B1 in dark soy sauce. Anal Chem. 2019;91(7):4727–34. https://doi.org/10.1021/acs.analchem.9b00223.

    Article  Google Scholar 

  14. Hu J, Jiang YZ, Tang M, Wu LL, Xie HY, Zhang ZL, et al. Colorimetric-fluorescent-magnetic nanosphere-based multimodal assay platform for Salmonella detection. Anal Chem. 2018;91(1):1178–84. https://doi.org/10.1021/acs.analchem.8b05154.

    Article  Google Scholar 

  15. Huang D, Niu C, Wang X, Lv X, Zeng G. “Turn-on” fluorescent sensor for Hg2+ based on single-stranded DNA functionalized Mn:CdS/ZnS quantum dots and gold nanoparticles by time-gated mode. Anal Chem. 2013;85:1164–70. https://doi.org/10.1021/ac303084d.

    Article  Google Scholar 

  16. Huang A, Qiu Z, Jin M, Shen Z, Chen Z, Wang X, et al. High-throughput detection of food-borne pathogenic bacteria using oligonucleotide microarray with quantum dots as fluorescent labels. Int J Food Microbiol. 2014;185:27–32. https://doi.org/10.1016/j.ijfoodmicro.2014.05.012.

    Article  Google Scholar 

  17. Ji X, Zheng J, Xu J, Rastogi VK, Cheng TC, DeFrank JJ, et al. (CdSe)ZnS quantum dots and organophosphorus hydrolase bioconjugate as biosensors. J Phys Chem B. 2005;109:3793–9. https://doi.org/10.1021/jp044928f.

    Article  Google Scholar 

  18. Jia M, Jia B, Liao X, Shi L, Zhang Z, Liu M, et al. A CdSe@CdS quantum dots based electrochemiluminescence aptasensor for sensitive detection of ochratoxin A. Chemosphere. 2022;287:131994. https://doi.org/10.1016/j.chemosphere.2021.131994.

    Article  ADS  Google Scholar 

  19. Jiang Q, Zhang D, Cao Y, Gan N. An antibody-free and signal-on type electrochemiluminescence sensor for diethylstilbestrol detection based on magnetic molecularly imprinted polymers-quantum dots labeled aptamer conjugated probes. J Electroanal Chem. 2017;789:1–8. https://doi.org/10.1016/j.jelechem.2017.02.020.

    Article  Google Scholar 

  20. Jiang R, Lin D, Zhang Q, Li L, Yang L. Multiplex chroma-response based fluorescent smartphone sensing platform for rapid and visual quantitative determination of antibiotic residues. Sensors Actuators B Chem. 2022;350:130902. https://doi.org/10.1016/j.snb.2021.130902.

    Article  Google Scholar 

  21. Kamaci UD, Kamaci M. Selective and sensitive ZnO quantum dots based fluorescent biosensor for detection of cysteine. J Fluoresc. 2021;31(2):401–14. https://doi.org/10.1007/s10895-020-02671-3.

    Article  Google Scholar 

  22. Leonard P, Hearty S, Brennan J, Dunne L, Quinn J, Chakraborty T, et al. Advances in biosensors for detection of pathogens in food and water. Enzym Microb Technol. 2003;32:3–13. https://doi.org/10.1016/S0141-0229(02)00232-6.

    Article  Google Scholar 

  23. Li J, Mao M, Wu F, Li Q, Wei L, Ma L. Amino-functionalized CdSe/ZnS quantum dotbased lateral flow immunoassay for sensitive detection of aflatoxin B1. Anal Methods. 2018;10(29):3582–8. https://doi.org/10.1039/c8ay00608c.

    Article  Google Scholar 

  24. Liao BY, Chang CJ, Wang CF, Lu CH, Chen JK. Controlled antibody orientation on Fe3O4 nanoparticles and CdTe quantum dots enhanced sensitivity of a sandwich-structured electrogenerated chemiluminescence immunosensor for the determination of human serum albumin. Sensors Actuators B Chem. 2021;336:129710. https://doi.org/10.1016/j.snb.2021.129710.

    Article  Google Scholar 

  25. Liu X, Zhou Z, Wang T, Xu Y, Lu K, Yan Y. Molecularly imprinted polymers-captivity ZnO nanorods for sensitive and selective detecting environmental pollutant. Spectrochim Acta A Mol Biomol Spectrosc. 2020;228:117785. https://doi.org/10.1016/j.saa.2019.117785.

    Article  Google Scholar 

  26. Long YT, Kong C, Li DW, Li Y, Chowdhury S, Tian H. Ultrasensitive determination of cysteine based on the photocurrent of nafion-functionalized CdS-MV quantum dots on an ITO electrode. Small. 2011;7(12):1624–8. https://doi.org/10.1002/smll.201100427.

    Article  Google Scholar 

  27. Lu Z, Chen X, Hu W. A fluorescence aptasensor based on semiconductor quantum dots and MoS2 nanosheets for ochratoxin A detection. Sensors Actuators B Chem. 2017;246:61–7. https://doi.org/10.1016/j.snb.2017.02.062.

    Article  Google Scholar 

  28. Luo L, Liu X, Ma S, Li L, You T. Quantification of zearalenone in mildewing cereal crops using an innovative photoelectrochemical aptamer sensing strategy based on ZnO-NGQDs composites. Food Chem. 2020;322:126778. https://doi.org/10.1016/j.foodchem.2020.126778.

    Article  Google Scholar 

  29. Marandi M, Nazari M. Application of TiO2 hollow spheres and ZnS/SiO2 double-passivaiting layers in the photoanode of the CdS/CdSe QDs sensitized solar cells for the efficiency enhancement. Sol Energy. 2021;216:48–60. https://doi.org/10.1016/j.solener.2020.11.057.

  30. Mohan D, Pathak A, Resmi PE, Suneesh PV, Babu TS. Fluorescence imaging of E. coli using CdSe quantum dots. In: IOP conference series: materials science and engineering, vol. 577(1). IOP Publishing; 2019. p. 012107.

    Google Scholar 

  31. Mollarasouli F, Kurbanoglu S, Asadpour-Zeynali K, Ozkan SA. Non-enzymatic monitoring of hydrogen peroxide using novel nanosensor based on CoFe2O4@CdSeQD magnetic nanocomposite and rifampicin mediator. Anal Bioanal Chem. 2020;412(21):5053–65. https://doi.org/10.1007/s00216-019-02306-y.

    Article  Google Scholar 

  32. Nazari A. Preparation of electroconductive, antibacterial, photoactive cotton fabric through green synthesis of ZnO/reduced graphene oxide nanocomposite. Fibers Polym. 2019;20(12):2618–24. https://doi.org/10.1007/s12221-019-9180-9.

    Article  Google Scholar 

  33. Praoboon N, Siriket S, Taokaenchan N, Kuimalee S, Phaisansuthichol S, Pookmanee P, Satienperakul S. Paper-based electrochemiluminescence device for the rapid estimation of trimethylamine in fish via the quenching effect of thioglycolic acid-capped cadmium selenide quantum dots. Food Chem. 2022;366:128066. https://doi.org/10.1016/j.foodchem.2021.130590.

    Article  Google Scholar 

  34. Qileng A, Liang H, Huang S, Liu W, Xu Z, Liu Y. Dual-function of ZnS/Ag2S nanocages in ratiometric immunosensors for the discriminant analysis of ochratoxins: Photoelectrochemistry and electrochemistry. Sensors Actuators B Chem. 2020;314:128066. https://doi.org/10.1016/j.snb.2020.128066.

  35. Rani M, Shanker U. Insight in to the degradation of bisphenol A by doped ZnO@ZnHCF nanocubes: high photocatalytic performance. J Colloid Interface Sci. 2018;530:16–28. https://doi.org/10.1016/j.jcis.2018.06.070.

    Article  ADS  Google Scholar 

  36. Rani M, Yadav J, Keshu, Shanker U. Green synthesis of sunlight responsive zinc oxide coupled cadmium sulfide nanostructures for efficient photodegradation of pesticides. J Colloid Interface Sci. 2021;601:689–703. https://doi.org/10.1016/j.jcis.2021.05.152.

    Article  ADS  Google Scholar 

  37. Roushani M, Ghanbari K. A novel aptasensor based on gold nanorods/ZnS QDs-modified electrode for evaluation of streptomycin antibiotic. Anal Methods. 2018;10(43):5197–204. https://doi.org/10.1039/c8ay01815d.

    Article  Google Scholar 

  38. Sai-Anand G, Sivanesan A, Benzigar MR, Singh G, Gopalan AI, Baskar AV, et al. Recent progress on the sensing of pathogenic bacteria using advanced nanostructures. Bull Chem Soc Jpn. 2019;92(1):216–44. https://doi.org/10.1246/bcsj.20180280.

    Article  Google Scholar 

  39. Satpathy G, Chandra GK, Manikandan E, Mahapatra DR, Umapathy S. Pathogenic Escherichia coli (E. coli) detection through tuned nanoparticles enhancement study. Biotechnol Lett. 2020;42(5):853–63. https://doi.org/10.1007/s10529-020-02835-y.

    Article  Google Scholar 

  40. Shan Y, Zhang HL, Zhu Y, Wang Y, Song H, Shi C. Electrochemiluminescent CdTe nanocrystal/reduced graphene oxide composite films for the detection of diethylstilbestrol. ACS Appl Nano Mater. 2020;3(5):4670–80. https://doi.org/10.1021/acsanm.0c00670.

    Article  Google Scholar 

  41. Shen H, Qileng A, Yang H, Liang H, Zhu H, Liu Y, et al. “Dual-signal-on” integrated-type biosensor for portable detection of miRNA: Cas12a-induced photoelectrochemistry and fluorescence strategy. Anal Chem. 2021;93(34):11816–25. https://doi.org/10.1021/acs.analchem.1c02395.

    Article  Google Scholar 

  42. Tan J, Guo M, Tan L, Geng Y, Huang S, Tang Y, et al. Highly efficient fluorescent QDs sensor for specific detection of protein through double recognition of hybrid aptamer-molecular imprinted polymers. Sensors Actuators B Chem. 2018;274:627–35. https://doi.org/10.1016/j.snb.2018.07.126.

    Article  Google Scholar 

  43. Tang T, Deng J, Zhang M, Shi G, Zhou T. Quantum dot-DNA aptamer conjugates coupled with capillary electrophoresis: a universal strategy for ratiometric detection of organophosphorus pesticides. Talanta. 2016;146:55–61. https://doi.org/10.1016/j.talanta.2015.08.023.

    Article  Google Scholar 

  44. Tayebi M, Tavakkoli Yaraki M, Ahmadieh M, Mogharei A, Tahriri M, Vashaee D, et al. Synthesis, surface modification and optical properties of thioglycolic acid-capped ZnS quantum dots for starch recognition at ultralow concentration. J Electron Mater. 2016;45(11):5671–8. https://doi.org/10.1007/s11664-016-4792-y.

    Article  ADS  Google Scholar 

  45. Tu W, Lei J, Wang P, Ju H. Photoelectrochemistry of free-base-porphyrin-functionalized zinc oxide nanoparticles and their applications in biosensing. Chemistry. 2011;17(34):9440–7. https://doi.org/10.1002/chem.201100577.

    Article  Google Scholar 

  46. Vaishanav SK, Korram J, Nagwanshi R, Ghosh KK, Satnami ML. Mn2+ doped- CdTe/ZnS modified fluorescence nanosensor for detection of glucose. Sensors Actuators B Chem. 2017;245:196–204. https://doi.org/10.1016/j.snb.2017.01.118.

    Article  Google Scholar 

  47. Van Duy L, Nguyet TT, Hung CM, Le DTT, Van Duy N, Hoa ND, et al. Ultrasensitive NO2 gas sensing performance of two dimensional ZnO nanomaterials: Nanosheets and nanoplates. Ceram Int. 2021;47(20):28811–20. https://doi.org/10.1016/j.ceramint.2021.07.042.

    Article  Google Scholar 

  48. Van MN, Li W, Sheng P, Van HP, Cai Q. Photoelectrochemical label-free immunoassay of octachlorostyrene based on heterogeneous CdSe/CdS/Pt/TiO2 nanotube array. J Electroanal Chem. 2015;736:69–75. https://doi.org/10.1016/j.jelechem.2014.10.033.

    Article  Google Scholar 

  49. Vinayaka AC, Basheer S, Thakur MS. Bioconjugation of CdTe quantum dot for the detection of 2,4-dichlorophenoxyacetic acid by competitive fluoroimmunoassay based biosensor. Biosens Bioelectron. 2009;24(6):1615–20. https://doi.org/10.1016/j.bios.2008.08.042.

    Article  Google Scholar 

  50. Viter R, Savchuk M, Riekstina U, Poletaev N, Pleiko K, Ramanavicius A. Photoluminescence ZnO nanorod biosensors for medical and food safety applications. In: 2017 IEEE 7th international conference nanomaterials: application & properties (NAP). IEEE, 04NB16-1-04NB16-3; 2017.

    Google Scholar 

  51. Wang R, Xu Y, Jiang Y, Chuan N, Su X, Ji J. Sensitive quantification and visual detection of bacteria using CdSe/ZnS@SiO2 nanoparticles as fluorescent probes. Anal Methods. 2014;6:6802–8. https://doi.org/10.1039/c4ay01257g.

    Article  Google Scholar 

  52. Wang Y, Si B, Lu S, Liu E, Hu X, Fan J. Near-infrared excitation of CdTe quantum dots based on fluorescence resonance energy transfer and their use as fluorescent sensors. Sensors Actuators B Chem. 2017;246:127–35. https://doi.org/10.1016/j.snb.2017.02.069.

    Article  Google Scholar 

  53. Wang S, Liu R, Li C. Highly selective and sensitive detection of Hg2+ based on Förster resonance energy transfer between CdSe quantum dots and g-C3N4 Nanosheets. Nanoscale Res Lett. 2018;13(1):1–7. https://doi.org/10.1186/s11671-018-2647-6.

    Article  ADS  Google Scholar 

  54. Wang SN, Zhu J, Li X, Li JJ, Zhao JW. Fluorescence turn-on sensing of trace cadmium ions based on EDTA-etched CdTe@CdS quantum dot. Spectrochim Acta A Mol Biomol Spectrosc. 2018;201:119–27. https://doi.org/10.1016/j.saa.2018.04.065.

    Article  ADS  Google Scholar 

  55. Wang Y, Li W, Hu X, Zhang X, Huang X, Li Z, et al. Efficient preparation of dual-emission ratiometric fluorescence sensor system based on aptamer-composite and detection of bis(2-ethylhexyl) phthalate in pork. Food Chem. 2021;352:129352. https://doi.org/10.1016/j.foodchem.2021.129352.

    Article  Google Scholar 

  56. Wang C, Zhang W, Qian J, Wang L, Ren Y, Wang Y, et al. A FRET aptasensor for sensitive detection of aflatoxin B1 based on a novel donor-acceptor pair between ZnS quantum dots and Ag nanocubes. Anal Methods. 2021;13(4):462–8. https://doi.org/10.1039/d0ay02017f.

    Article  Google Scholar 

  57. Wei J, Hu Q, Gao Y, Hao N, Qian J, Wang K. A multiplexed self-powered dual-photoelectrode biosensor for detecting dual analytes based on an electron-transfer- regulated conversion strategy. Anal Chem. 2021;93(15):6214–22. https://doi.org/10.1021/acs.analchem.1c00503.

    Article  Google Scholar 

  58. Wong A, Santos AM, Cincotto FH, Moraes FC, Fatibello-Filho O, Sotomayor MD. A new electrochemical platform based on low cost nanomaterials for sensitive detection of the amoxicillin antibiotic in different matrices. Talanta. 2020;206:120252. https://doi.org/10.1016/j.talanta.2019.120252.

    Article  Google Scholar 

  59. Xia H, He G, Peng J, Li W, Fang Y. Preparation and fluorescent sensing applications of novel CdSe-chitosan hybrid films. Appl Surf Sci. 2010;256(23):7270–5. https://doi.org/10.1016/j.apsusc.2010.05.063.

    Article  ADS  Google Scholar 

  60. Xia H, Peng M, Li N, Liu L. CdSe quantum dots-sensitized FRET system for ciprofloxacin detection. Chem Phys Lett. 2020;740:137085. https://doi.org/10.1016/j.cplett.2019.137085.

    Article  Google Scholar 

  61. Xiong LH, Cui R, Zhang ZL, Yu X, Xie Z, Shi YB, et al. Uniform fluorescent nanobioprobes for pathogen detection. ACS Nano. 2014;8:5116–24. https://doi.org/10.1021/nn501174g.

    Article  Google Scholar 

  62. Xu R, Lu P, Wu B, Wang X, Pang X, Du B, et al. Using SiO2/PDA-Ag NPs to dual-inhibited photoelectrochemical activity of CeO2-CdS composites fabricated a novel immunosensor for BNP ultrasensitive detection. Sensors Actuators B Chem. 2018;274:349–55. https://doi.org/10.1016/j.snb.2018.07.122.

  63. Xu X, Yang Y, Jin H, Pang B, Yang R, Yan L, et al. Fungal in situ assembly gives novel properties to CdSxSe1−x quantum dots for sensitive label-free detection of chloramphenicol. ACS Sustain Chem Eng. 2020;8:6806–14. https://doi.org/10.1021/acssuschemeng.0c01698.

    Article  Google Scholar 

  64. Yan X, Li H, Han X, Su X. A ratiometric fluorescent quantum dots based biosensor for organophosphorus pesticides detection by inner-filter effect. Biosens Bioelectron. 2015;74:277–83. https://doi.org/10.1016/j.bios.2015.06.020.

    Article  Google Scholar 

  65. Yan W, Xu H, Ling M, Zhou S, Qiu T, Deng Y, et al. MOF-derived porous hollow Co3O4@ZnO cages for high-performance MEMS trimethylamine sensors. ACS Sens. 2021;6(7):2613–21. https://doi.org/10.1021/acssensors.1c00315.

  66. Yang P, Chen C, Wang D, Ma H, Du Y, Cai D, et al. Kinetics, reaction pathways, and mechanism investigation for improved environmental remediation by 0D/3D CdTe/Bi2WO6 Z-scheme catalyst. Appl Catal B Environ. 2021;285:119877. https://doi.org/10.1016/j.apcatb.2021.119877.

    Article  Google Scholar 

  67. You J, Ma L, He Y, Ge Y, Song G, Zhou J. ZnSe:Mn/ZnS quantum dots for the detection of microcystin by room temperature phosphorescence immunoassay. Micro Nano Lett. 2019;14(8):892–6. https://doi.org/10.1049/mnl.2018.5690.

    Article  Google Scholar 

  68. Young SJ, Lai LT, Tang WL. Improving the performance of pH sensors with one-dimensional ZnO nanostructures. IEEE Sensors J. 2019;19(23):10972–6. https://doi.org/10.1109/JSEN.2019.2932627.

    Article  ADS  Google Scholar 

  69. Young SJ, Chu YJ, Chen YL. Enhancing pH sensors performance of ZnO Nanorods with au nanoparticles adsorption. IEEE Sensors J. 2021;21(12):13068–73. https://doi.org/10.1109/JSEN.2021.3062857.

    Article  ADS  Google Scholar 

  70. Yu Z, Huang L, Chen J, Li M, Tang D. Graded oxygen-doped CdS electrode for portable photoelectrochemical immunoassay of alpha-fetoprotein coupling with a digital multimeter readout. Sensors Actuators B Chem. 2021;343:130136. https://doi.org/10.1016/j.snb.2021.130136.

    Article  Google Scholar 

  71. Yu J, Lin J, Li J. A photoelectrochemical sensor based on an acetylcholinesterase-CdS/ZnO-modified extended-gate field-effect transistor for glyphosate detection. Analyst. 2021;146(14):4595–604. https://doi.org/10.1039/d1an00797a.

    Article  ADS  Google Scholar 

  72. Yuan X, Zhang D, Zhu X, Liu H, Sun B. Triple-dimensional spectroscopy combined with chemometrics for the discrimination of pesticide residues based on ionic liquid-stabilized Mn-ZnS quantum dots and covalent organic frameworks. Food Chem. 2021;342:128299. https://doi.org/10.1016/j.foodchem.2020.128299.

    Article  Google Scholar 

  73. Yue HY, Zhang HJ, Huang S, Lu XX, Gao X, Song SS, et al. Highly sensitive and selective dopamine biosensor using Au nanoparticles-ZnO nanocone arrays/graphene foam electrode. Mater Sci Eng C. 2020;108:110490. https://doi.org/10.1016/j.msec.2019.110490.

    Article  Google Scholar 

  74. Zhan S, Huang X, Chen R, Li J, Xiong Y. Novel fluorescent ELISA for the sensitive detection of zearalenone based on H2O2-sensitive quantum dots for signal transduction. Talanta. 2016;158:51–6. https://doi.org/10.1016/j.talanta.2016.05.035.

    Article  Google Scholar 

  75. Zhang F, Liu B, Sheng W, Zhang Y, Liu Q, Li S, et al. Fluoroimmunoassays for the detection of zearalenone in maize using CdTe/CdS/ZnS quantum dots. Food Chem. 2018;255:421–8. https://doi.org/10.1016/j.foodchem.2018.02.060.

    Article  Google Scholar 

  76. Zhang H, Jin Q, Song X, Li H, Jia D, Liu T. Oxazine-functionalized CdSe/ZnS quantum dots for photochemical pH sensing. ACS Appl Nano Mater. 2020;3(11):10996–1006. https://doi.org/10.1021/acsanm.0c02219.

    Article  Google Scholar 

  77. Zhang C, Zhou L, Peng J. Blue-light photoelectrochemical aptasensor for kanamycin based on synergistic strategy by Schottky junction and sensitization. Sensors Actuators B Chem. 2021;340:129898. https://doi.org/10.1016/j.snb.2021.129898.

    Article  Google Scholar 

  78. Zhao X, Zhou S, Shen Q, Jiang LP, Zhu JJ. Fabrication of glutathione photoelectrochemical biosensor using graphene-CdS nanocomposites. Analyst. 2012;137(16):3697–703. https://doi.org/10.1039/c2an35658a.

    Article  ADS  Google Scholar 

  79. Zhao Y, Tan L, Gao X, Jie G, Huang T. Silver nanoclusters-assisted ion-exchange reaction with CdTe quantum dots for photoelectrochemical detection of adenosine by target-triggering multiple-cycle amplification strategy. Biosens Bioelectron. 2018;110:239–45. https://doi.org/10.1016/j.bios.2018.03.069.

    Article  Google Scholar 

  80. Zhao B, Deng S, Li J, Sun C, Fu Y, Liu Z. Green synthesis, characterization and antibacterial study on the catechin-functionalized ZnO nanoclusters. Mater Res Express. 2021;8(2):025006. https://doi.org/10.1088/2053-1591/abe255.

    Article  ADS  Google Scholar 

  81. Zhao D, Zhang Y, Ji S, Lu Y, Bai X, Yin M, et al. Molecularly imprinted photoelectrochemical sensing based on ZnO/polypyrrole nanocomposites for acrylamide detection. Biosens Bioelectron. 2021;173:112816. https://doi.org/10.1016/j.bios.2020.112816.

    Article  Google Scholar 

  82. Zheng Y, Fu L, Wang A, Peng F, Yang J, Han F. One-pot hydrothermal preparation of SnO2-ZnO nanohybrids for simultaneous electrochemical detection of catechol and hydroquinone. Sens Lett. 2015;13(10):878–82. https://doi.org/10.1166/sl.2015.3543.

    Article  Google Scholar 

  83. Zheng L, Wan Y, Qi P, Sun Y, Zhang D, Yu L. Lectin functionalized ZnO nanoarrays as a 3D nano-biointerface for bacterial detection. Talanta. 2017;167:600–6. https://doi.org/10.1016/j.talanta.2017.03.007.

    Article  Google Scholar 

  84. Zheng Y, Wang X, He S, Gao Z, Di Y, Lu K, et al. Aptamer-DNA concatamer-quantum dots based electrochemical biosensing strategy for green and ultrasensitive detection of tumor cells via mercury-free anodic stripping voltammetry. Biosens Bioelectron. 2019;126:261–8. https://doi.org/10.1016/j.bios.2018.09.076.

    Article  Google Scholar 

  85. Zhong M, Yang L, Yang H, Cheng C, Deng W, Tan Y, et al. An electrochemical immunobiosensor for ultrasensitive detection of Escherichia coli O157:H7 using CdS quantum dots-encapsulated metal-organic frameworks as signal-amplifying tags. Biosens Bioelectron. 2019;126:493–500. https://doi.org/10.1016/j.bios.2018.11.001.

    Article  Google Scholar 

  86. Zhou WH, Wang HH, Li WT, Guo XC, Kou DX, Zhou ZJ, et al. Gold nanoparticles sensitized ZnO nanorods arrays for dopamine electrochemical sensing. J Electrochem Soc. 2018;165(12):G3001–7. https://doi.org/10.1149/2.0011811jes.

    Article  Google Scholar 

  87. Zhu R, Lai M, Zhu M, Liang H, Zhou Q, Li R, et al. A functional ratio fluorescence sensor platform based on the graphene/Mn-ZnS quantum dots loaded with molecularly imprinted polymer for selective and visual detection sinapic acid. Spectrochim Acta A Mol Biomol Spectrosc. 2021;244:118845. https://doi.org/10.1016/j.saa.2020.118845.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Special Fund for Agro-scientific Research in the Public Interest (201403071), the National Natural Science Foundation of China (No. 21305158), Modern Agro-Industry Technology Research System of the PR China (CARS-36). We thank the University of Liège-Gembloux Agro-Bio Tech and more specifically the research platform Agriculture Is Life for the funding of the scientific stay in Belgium that made this paper possible.

Author Contributions

This work proposed in this book chapter was carried out in collaboration with all the authors. X.D.G. and M.K.Z. proposed the idea of the work, wrote the original paper and analysed the background, literatures, and materials. M.L.F. and J.Q.W. supported the structure and revised the book chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaodong Guo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Guo, X., Wang, J., Zhang, M., Fauconnier, ML. (2023). Specific Applications of II–VI Semiconductor Nanomaterials-Based Biosensors for Food Analysis and Food Safety. In: Korotcenkov, G. (eds) Handbook of II-VI Semiconductor-Based Sensors and Radiation Detectors. Springer, Cham. https://doi.org/10.1007/978-3-031-24000-3_27

Download citation

Publish with us

Policies and ethics