Skip to main content
Log in

A Highly Sensitive and Selective Fluorescent Probe for the Detection of Cerium(III) Using Tridentate Based-Oxazolidine: Experimental and DFT Investigations

  • Research
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A new fluorescent sensor based on oxazolidine derivative, (2-(pyridin-2-yl)oxazolidine-4,4-diyl)dimethanol; TN), was designed and synthesized successfully in high yield (82%) under Schiff base reaction. The structural elucidation of the sensor has been confirmed by Infrared Spectroscopy, Nuclear Magnetic Resonance Spectroscopy, and High Resolution Mass Spectrometry - Electrospray Ionization - Time of Flight. The designed TN sensor exhibited high sensitivity and selectivity towards an aqueous solution of cerium(III) over various metal ions under biologically relevant conditions (100.0 mM HEPES buffer pH 7.4). The limit of detection (LOD) was reported as 54.0 nM. The geometry of tridentate based-oxazolidine (TN) and its coordination of cerium(III) (TN-Ce3+) was proven by using the density functional theory (DFT) calculations. The highest occupied molecular orbital - lowest unoccupied molecular orbital energy gap was decreased when TN-Ce3+ is formed. The results indicated that TN can be used as a fluorescent probe for high sensitivity and selectivity detection of cerium(III) ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The characteristic 1 H, 13 C NMR, FT-IR, and mass spectra of TN are shown in Figs. S1S4. Time response of TN probe to Ce(III) is shown in Fig. S5.

References

  1. Quang DT, Kim JS (2010) Fluoro- and Chromogenic Chemodosimeters for Heavy Metal Ion Detection in Solution and Biospecimens. Chem Rev 110(10):6280–6301. https://doi.org/10.1021/cr100154p

  2. Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: A review. J Environ Manage 92(3):407–418. https://doi.org/10.1016/j.jenvman.2010.11.011

    Article  CAS  Google Scholar 

  3. De Acha N, Elosúa C, Corres JM, Arregui FJ (2019) Fluorescent Sensors for the Detection of Heavy Metal Ions in Aqueous Media. Sensors 19(3):599. https://doi.org/10.3390/s19030599

    Article  CAS  Google Scholar 

  4. Kim HN, Ren WX, Kim JS, Yoon J (2012) Fluorescent and colorimetric sensors for detection of lead, cadmium, and mercury ions. Chem Soc Rev 41(8):3210–3244. https://doi.org/10.1039/C1CS15245A

    Article  CAS  Google Scholar 

  5. Hedrick JB, Sinha SP (1994) Cerium-based polishing compounds: discovery to manufacture. J Alloys Comps 207–208:377–382. https://doi.org/10.1016/0925-8388(94)90243-7

    Article  Google Scholar 

  6. Benedetto A, Bocca C, Brizio P, Cannito S, Abete MC, Squadrone S (2018) Effects of the rare elements lanthanum and cerium on the growth of colorectal and hepatic cancer cell lines. Toxicol in Vitro 46:9–18. https://doi.org/10.1016/j.tiv.2017.09.024

    Article  CAS  Google Scholar 

  7. García A, Espinosa R, Delgado L, Casals E, González E, Puntes V, Barata C, Font X, Sánchez A (2011) Acute toxicity of cerium oxide, titanium oxide and iron oxide nanoparticles using standardized tests. Desalination 269(1):136–141. https://doi.org/10.1016/j.desal.2010.10.052

    Article  CAS  Google Scholar 

  8. Li Y, Li P, Yu H, Bian Y (2016) Recent advances (2010–2015) in studies of cerium oxide nanoparticles’ health effects. Environ Toxicol Pharmacol 44:25–29. https://doi.org/10.1016/j.etap.2016.04.004

    Article  CAS  Google Scholar 

  9. Awual MR, Hasan MM, Shahat A, Naushad M, Shiwaku H, Yaita T (2015) Investigation of ligand immobilized nano-composite adsorbent for efficient cerium(III) detection and recovery. Chem Eng J 265:210–218. https://doi.org/10.1016/j.cej.2014.12.052

    Article  CAS  Google Scholar 

  10. Rofouei MK, Tajarrod N, Masteri-Farahani M, Zadmard R (2015) A New Fluorescence Sensor for Cerium (III) Ion Using Glycine Dithiocarbamate Capped Manganese Doped ZnS Quantum Dots. J Fluoresc 25(6):1855–1866. https://doi.org/10.1007/s10895-015-1678-y

    Article  CAS  Google Scholar 

  11. Ahmed MJ, Islam MT, Farhana F (2019) A highly sensitive and selective spectrofluorimetric method for the determination of cerium at pico-trace levels in some real, environmental, biological, soil, food and bone samples using 2-(α-pyridyl)-thioquinaldinamide. RSC Adv 9(44):25609–25626. https://doi.org/10.1039/C9RA02850A

    Article  CAS  Google Scholar 

  12. Nemati F, Zare-Dorabei R (2019) A ratiometric probe based on Ag2S quantum dots and graphitic carbon nitride nanosheets for the fluorescent detection of Cerium. Talanta 200:249–255. https://doi.org/10.1016/j.talanta.2019.03.059

    Article  CAS  Google Scholar 

  13. Luo X, Chen D, Xu Z, Song Y, Li H, Xian C (2020) A fluorescent probe based on a spiropyran for sensitive detection of Ce3+ ion. J Rare Earths 38(4):445–450. https://doi.org/10.1016/j.jre.2019.05.016

    Article  CAS  Google Scholar 

  14. Bhuvanesh N, Suresh S, Velmurugan K, Thamilselvan A, Nandhakumar R (2020) Quinoline based probes: Large blue shifted fluorescent and electrochemical sensing of cerium ion and its biological applications. J Photochem Photobiol A: Chem 386:112103. https://doi.org/10.1016/j.jphotochem.2019.112103

    Article  CAS  Google Scholar 

  15. Immanuel David C, Bhuvanesh N, Jayaraj H, Thamilselvan A, Parimala devi D, Abiram A, Prabhu J, Nandhakumar R (2020) Experimental and Theoretical Studies on a Simple S–S-Bridged Dimeric Schiff Base: Selective Chromo-Fluorogenic Chemosensor for Nanomolar Detection of Fe2+ & Al3+ Ions and Its Varied Applications. ACS Omega 5(6):3055–3072. https://doi.org/10.1021/acsomega.9b04294

    Article  CAS  Google Scholar 

  16. Shellaiah M, Chen Y-T, Thirumalaivasan N, Aazaad B, Awasthi K, Sun KW, Wu S-P, Lin M-C, Ohta N (2021) Pyrene-Based AIEE Active Nanoprobe for Zn2+ and Tyrosine Detection Demonstrated by DFT, Bioimaging, and Organic Thin-Film Transistor. ACS Appl Mater Interfaces 13(24):28610–28626. https://doi.org/10.1021/acsami.1c04744

    Article  CAS  Google Scholar 

  17. Afkhami A, Madrakian T, Shirzadmehr A, Tabatabaee M, Bagheri H (2012) New Schiff base-carbon nanotube–nanosilica–ionic liquid as a high performance sensing material of a potentiometric sensor for nanomolar determination of cerium(III) ions. Sens Actuators B: Chem 174:237–244. https://doi.org/10.1016/j.snb.2012.07.116

    Article  CAS  Google Scholar 

  18. Ali TA, Mohamed GG (2022) Design and construction of an electrochemical sensor for the determination of cerium(III) ions in petroleum water samples based on a Schiff base-carbon nanotube as an ionophore. RSC Adv 12(1):94–103. https://doi.org/10.1039/D1RA08337F

    Article  CAS  Google Scholar 

  19. Das DK, Bharali B, Goyari S (2018) Condensation Product of 4-Methoxybenzaldehyde and Ethylenediamine: “Off-On” Fluorescent Sensor for Cerium(III). J Fluoresc 28(6):1357–1361. https://doi.org/10.1007/s10895-018-2298-0

    Article  CAS  Google Scholar 

  20. Bordoloi P, Guha AK, Das DK (2022) Condensation Product of 1-Naphthaldehyde and 3-Aminophenol: Fluorescent “on” Probe for Ce3+ and “off” Probe for Dichromate (Cr2O72–). J Fluoresc 32(3):1189–1198. https://doi.org/10.1007/s10895-022-02927-0

    Article  CAS  Google Scholar 

  21. Bikas R, Ajormal F, Emami M, Noshiranzadeh N, Kozakiewicz A (2018) Catalytic oxidation of benzyl alcohols by new Cu(II) complexes of 1,3-oxazolidine based ligand obtained from a solvent free reaction. Inorganica Chim Acta 478:77–87. https://doi.org/10.1016/j.ica.2018.03.038

    Article  CAS  Google Scholar 

  22. Bikas R, Ajormal F, Noshiranzadeh N, Emami M, Kozakiewicz A (2020) 1D Azido bridged Cu(II) coordination polymer with 1,3-oxazolidine ligand as an effective catalyst for green click synthesis of 1,2,3-triazoles. Appl Organomet Chem 34(10):e5826. https://doi.org/10.1002/aoc.5826

    Article  CAS  Google Scholar 

  23. Bikas R, Ajormal F, Emami M, Sanchiz J, Noshiranzadeh N, Kozakiewicz A (2019) Crystal structure and magneto-structural investigation of alkoxido bridged dinuclear Fe(III) complexes with 1,3-oxazolidine ligands. Polyhedron 162:20–29. https://doi.org/10.1016/j.poly.2019.01.035

    Article  CAS  Google Scholar 

  24. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98(7):5648–5652. https://doi.org/10.1063/1.464913

    Article  CAS  Google Scholar 

  25. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37(2):785–789. https://doi.org/10.1103/PhysRevB.37.785

    Article  CAS  Google Scholar 

  26. Nagata T, Wu JWJ, Nakano M, Ohshimo K, Misaizu F (2019) Geometrical Structures of Gas-Phase Cerium Oxide Cluster Cations Studied by Ion Mobility Mass Spectrometry. J Phys Chem C 123(27):16641–16650. https://doi.org/10.1021/acs.jpcc.9b01378

    Article  CAS  Google Scholar 

  27. Chaichana K, Phutlaprungrueang N, Chaicharoenwimolkul L, Promkatkaew M, Kongsriprapan S (2019) A selective fluorescence probe based on naphthalene for the detection of barium(II). Spectrochim Acta A: Mol Biomol Spectrosc 207:118–122. https://doi.org/10.1016/j.saa.2018.09.006

    Article  CAS  Google Scholar 

  28. Promkatkaew M, Suramitr S, Karpkird T, Ehara M, Hannongbua S (2020) DFT/TD-DFT investigation on the photoinduced electron transfer of diruthenium and viologen complexes. J Lumin 222:117121. https://doi.org/10.1016/j.jlumin.2020.117121

    Article  CAS  Google Scholar 

  29. Jr. THD Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J Chem Phys 90(2):1007–1023. https://doi.org/10.1063/1.456153

  30. Dolg M, Stoll H, Preuss H (1989) Energy-adjusted ab initio pseudopotentials for the rare earth elements. J Chem Phys 90(3):1730–1734. https://doi.org/10.1063/1.456066

    Article  CAS  Google Scholar 

  31. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ Gaussian 09 Rev. A.02. Wallingford, CT2009

  32. Abd El-Wahab ZH (2008) Mixed ligand complexes of nickel(II) and cerium(III) ions with 4-(-3-methoxy-4-hydroxybenzylideneamino)-1, 3-dimethyl-2,6-pyrimidine-dione and some nitrogen/oxygen donor ligands. J Coord Chem 61(20):3284–3296. https://doi.org/10.1080/00958970802039996

    Article  CAS  Google Scholar 

  33. Ilichev VA, Silantyeva LI, Grishin ID, Rozhkov AV, Rumyantcev RV, Fukin GK, Bochkarev MN (2019) Cerium(III) complexes with azolyl-substituted thiophenolate ligands: synthesis, structure and red luminescence. RSC Adv 9(42):24110–24116. https://doi.org/10.1039/C9RA03199E

    Article  CAS  Google Scholar 

Download references

Funding

We thank the Faculty of Science at Si Racha, Kasetsart University, Si Racha Campus, Chonburi, Thailand for financial support. Kasetsart University Research and Development Institute (P-3.2(D)155.61), National e-Science Infrastructure Consortium, National Electronics and Computer Technology Center (NECTEC) for providing computing resources.

Author information

Authors and Affiliations

Authors

Contributions

M.P. expanded the idea, performed the theoretical calculations, wrote, and revised the manuscript. L.C.C. discussed critical ideas from the data, wrote, and revised the manuscript. K.N. and J.S. performed the experiment, measured, and collected the related data. S.K. initiated the idea, expanded the idea, discussed critical ideas from the data, wrote, and revised the manuscript.

Corresponding author

Correspondence to Sopanat Kongsriprapan.

Ethics declarations

Ethical Approval

This article does not contain any studies involving animals performed by any of the authors.

Competing Interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Promkatkaew, M., Chuaitammakit, L.C., Naree, K. et al. A Highly Sensitive and Selective Fluorescent Probe for the Detection of Cerium(III) Using Tridentate Based-Oxazolidine: Experimental and DFT Investigations. J Fluoresc 33, 145–152 (2023). https://doi.org/10.1007/s10895-022-03043-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-022-03043-9

Keywords

Navigation