Skip to main content
Log in

Fashionable Co-operative Sensing of Bivalent Zn2+ and Cd2+ in Attendance of OAc by Use of Simple Sensor: Exploration of Molecular Logic Gate and Docking Studies

  • Research
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The Schiff-base probe H2VL [6,6'-((1E,1'E)-hydrazine-1,2 diylidenebis(methanylylidene))bis(2-methoxyphenol)] is synthesized and structurally characterized by single crystal X-ray diffraction (SCXRD). H2VL is able to detect selectively acetate ion (OAc-) colorimetrically over other anions with 1:1 co-ordination. The detection limit is found to be 4.93 µM. On the other hand, fluorescence intensity of the receptor is drastically enhanced with Zn2+ and Cd2+ in the presence of acetate as counter anion. N, N-Dimethyl formamide (DMF) or Dimethylsulphoxide (DMSO) and acetate (OAc-) was the best solvent and counter anion for Zn2+/Cd2+ -sensing compared with other solvents and anions, respectively. Detection limit for Zn2+ and Cd2+ are calculated to be 1.94 µM and 1.99 µM, respectively. The strong selective emissive behavior could be attributed to the CHEF (chelation-enhanced fluorescence) process. According to the changes in output emission intensity in DMSO in response to the set of ions (Zn2+, Cd2+ and OAc¯) as input variables, the function of 3-input multifunctional molecular logic circuits has been demonstrated. The molecular docking studies of H2VL with DNA and BSA are also performed to confirm its possible bioactivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Scheme 2
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability

Raw data and materials are available on request to the author.

References

  1. Ji X, Yao Y, Li J, Yan X, Huang F (2013) A supramolecular cross-linked conjugated polymer network for multiple fluorescent sensing. J Am Chem Soc 135:74–77

    Article  CAS  PubMed  Google Scholar 

  2. Chao J, Li Z, Zhang Y, Huo F, Yin C, Liu Y, Li Y, Wang J (2016) A single fluorescent probe for multiple analyte sensing: Efficient and selective detection of CN-, HSO3- and extremely alkaline pH. J Mater Chem B 4:3703–3712

    Article  CAS  PubMed  Google Scholar 

  3. Purkait R, Dey S, Sinhaa C (2018) A multi-analyte responsive chemosensor vanilinyl Schiff base: Fluorogenic sensing of Zn(II), Cd(II) and I-. New J Chem 42:16653–16665

    Article  CAS  Google Scholar 

  4. Chohan ZH, Praveen M (1999) Biological role of anions (sulfate, nitrate, oxalate and acetate) on the antibacterial properties of cobalt(II) and nickel(II) complexes with pyrazinedicarboxaimide derived, furanyl and thienyl compounds. Met Based Drugs 6:95–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Collins GM, Halasz NA (1976) Forty-eight hour ice storage of kidneys: importance of cation content. Surgery 79:432–435

    CAS  PubMed  Google Scholar 

  6. Smith DG, Topolnicki IL, Zwicker VE, Jolliffe KA, New EJ (2017) Fluorescent sensing arrays for cations and anions. Analyst 142:3549–3563

    Article  CAS  PubMed  Google Scholar 

  7. Prodi L, Montalti M, Zaccheroni N, Dolci LS (2007) Probes and sensors for cations. Top Fluoresc Spectrosc 1–57

    Google Scholar 

  8. Gunnlaugsson T, Glynn M, Tocci GM, Kruger PE, Pfeffer FM (2006) Anion recognition and sensing in organic and aqueous media using luminescent and colorimetric sensors. Coord Chem Rev 250:3094–3117

    Article  CAS  Google Scholar 

  9. Mizukami S, Nagano T, Urano Y, Odani A, Kikuchi K (2002) A fluorescent anion sensor that works in neutral aqueous solution for bioanalytical application. J Am Chem Soc 124:3920–3925

    Article  CAS  PubMed  Google Scholar 

  10. Kaur N, Kaur G, Fegade UA, Singh A, Sahoo SK, Kuwar AS, Singh N (2017) Anion sensing with chemosensors having multiple –NH recognition units, TrAC -. Trends Anal Chem 95:86–109

    Article  CAS  Google Scholar 

  11. Duke RM, Veale EB, Pfeffer FM, Kruger PE, Gunnlaugsson T (2010) Colorimetric and fluorescent anion sensors: An overview of recent developments in the use of 1,8-naphthalimide-based chemosensors. Chem Soc Rev 39:3936–3953

    Article  CAS  PubMed  Google Scholar 

  12. Chohan ZH, Rauf A (1996) Pharmacological role of anions (sulphate, nitrate, oxalate and acetate) on the antibacterial activity of cobalt(II), copper(II) and nickel(II) complexes with nicotinoylhydrazine-derived ONO, NNO and SNO ligands. Metal-Based Drugs 3:372485

    Article  Google Scholar 

  13. Crouse JR, Gerson CD, DeCarli LM, Lieber CS (1968) Role of acetate in the reduction of plasma free fatty acids produced by ethanol in man. J Lipid Res 9:509–512

    Article  CAS  PubMed  Google Scholar 

  14. Maxwell CR, Spangenberg RJ, Hoek JB, Silberstein SD, Oshinsky ML (2010) Acetate causes alcohol hangover headache in rats. PLoS ONE 5:e15963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shao J, Lin H, Yu M, Cai Z, Lin H (2008) Study on acetate ion recognition and sensing in aqueous media using a novel and simple colorimetric sensor and its analytical application. Talanta 75:551–555

    Article  CAS  PubMed  Google Scholar 

  16. Houtepen AJ, Koole R, Meeldijk J, Hickey SG (2006) The hidden role of acetate in the PbSe nanocrystal synthesis. J Am Chem Soc 128:6792–6793

    Article  PubMed  CAS  Google Scholar 

  17. Gao X, Lin S, Ren F, Li J, Chen J, Yao C, Yang H, Jiang S, Yan G, Wang D, Wang Y, Liu Y, Cai Z, Xu Y, Chen J, Yu W, Yang P, Lei Q (2016) Acetate functions as an epigenetic metabolite to promote lipid synthesis under hypoxia. Nat Commun, 7:11960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bayindir S, Yararli K (2019) The easy synthesis of new N-substituted 5-oxindoline-rhodanines and their sensing ability: The recognition of acetate ions in aqueous solution. New J Chem 43:8168–8178

    Article  CAS  Google Scholar 

  19. Hu S, Guo Y, Xu J, Shao S (2008) A selective chromogenic molecular sensor for acetate anions in a mixed acetonitrile-water medium. Org Biomol Chem 6:2071–2075

    Article  CAS  PubMed  Google Scholar 

  20. Qiao YH, Lin H, Shao J, Lin HK (2009) A highly selective naked-eye colorimetric sensor for acetate ion based on 1,10-phenanthroline-2,9-dicarboxyaldehyde-di-(p-substitutedphenyl-hydrazone). Spectrochim Acta Part A Mol Biomol Spectrosc 72:378–381

    Article  CAS  Google Scholar 

  21. Mulkidjanian AY (2009) On the origin of life in the Zinc world : 1. Photosynthesizing, porous edifices built of hydrothermally precipitated zinc sulfide as cradles of life on Earth 39:1–39

    Google Scholar 

  22. Noonan CW, Kathman SJ, Sarasua SM, White MC (2003) Influence of environmental zinc on the association between environmental and biological measures of lead in children. J Expo Sci Environ Eoidemiol 13:318–323

    Article  CAS  PubMed  Google Scholar 

  23. Hojyo S, Fukada T (2016) Roles of zinc signaling in the immune. System 2016:6762343

    Google Scholar 

  24. Meunier N, Connor JMO, Maiani G, Cashman KD, Secker DL, Ferry M, Roussel AM, Coudray C (2005) Importance of zinc in the elderly : the ZENITH study. Eur J Clin Nutr 59:1–4

    Article  CAS  Google Scholar 

  25. Galetti V, Mitchikpe CES, Kujinga P, Hounhouigan DJ, Zimmermann MB, Moretti D (2016) Rural beninese children are at risk of zinc deficiency according to stunting prevalence and plasma zinc concentration but not dietary zinc intakes. J Nutr 1–10

    Article  CAS  Google Scholar 

  26. Gibson RS, Ferguson EL (1998) Nutrition intervention strategies to combat zinc deficiency in developing countries. Nutr Res Rev 11:115–131

    Article  CAS  PubMed  Google Scholar 

  27. Prasad AS, Miale AJ, Farid Z, Sandstead HH, Schulert AR (1963) Zinc metabolism in patients with the syndrome of iron deficiency anemia, hepatosplenomegaly, dwarfism, and hypogonadism. J Lab Clin Med 61:537–549

    CAS  PubMed  Google Scholar 

  28. Saper RB, Rash R (2009) Zinc: an essential micronutrient. Am Fam Physician 79:768–772

    PubMed  PubMed Central  Google Scholar 

  29. Report C (2002) Toxic effects associated with consumption of zinc. Mayo Clin Proc 77:713–716

    Article  Google Scholar 

  30. Shimbo S, Zhang Z, Watanabe T (2001) Cadmium and lead contents in rice and other cereal products in Japan in 1998. Sci Total Environ 281:165–175

    Article  CAS  PubMed  Google Scholar 

  31. Baker DE, Amacher MC, Leach RM (1979) Sewage sludge as a source of cadmium in soil-lant animal systems. Environ Health Perspect 28:45–49

    PubMed  PubMed Central  Google Scholar 

  32. Tsukahara T, Ezaki T, Moriguchi J, Furuki K (2003) Rice as the most influential source of cadmium intake among general Japanese population. Sci Total Environ 305:41–51

    Article  CAS  PubMed  Google Scholar 

  33. Palmer KC, Naseem SM, Hayes JA, Tishler PV (1983) Lung aryl hydrocarbon hydroxylase: Inhibition following cadmium chloride inhalation. Environ Res 32:432–444

    Article  CAS  PubMed  Google Scholar 

  34. Tinkov AA, Filippini T, Ajsuvakova OP, Aaseth J, Gluhcheva YG, Ivanova JM, Bjørklund G, Skalnaya MG, Gatiatulina ER, Popova EV, Nemereshina ON, Vinceti M, Skalny AV (2017) The role of cadmium in obesity and diabetes. Sci Total Environ 601–602:741–755

    Article  PubMed  CAS  Google Scholar 

  35. Waalkes MP, Rehm S (1994) Cadmium and prostate cancer. J Toxicol Environ Health Part A Curr Issues 43: 251–269

    Article  CAS  Google Scholar 

  36. Martin MB, Voeller HJ, Gelmann EP, Lu J, Stoica E, Hebert EJ, Reiter R, Singh B, Danielsen M, Pentecost E, Stoica A (2015) Role of cadmium in the regulation of AR gene expression and activity 143:263–275

    Google Scholar 

  37. Benoff S, Hurley IR, Barcia M, Mandel FS, Cooper GW, Hershlag A (1997) A potential role for cadmium associated infertility in the etiology of varicocele-. Fertil Steril 67:336–347

    Article  CAS  PubMed  Google Scholar 

  38. Atarug SOS, Nishijo M, Lasker JM, Edwards RJ, Moore MR (2006) Kidney dysfunction and hypertension : Role for cadmium, p450 and heme oxygenases ? Tohoku J Exp Med 208:179–202

    Article  Google Scholar 

  39. Voggt H, Braunt H, Metzgert M, Schneidert J (1986) The specific role of cadmium and mercury in municipal solid waste incineration. Waste Manag Res J Sustain Circ Econ 4:65–73

    Google Scholar 

  40. Prodi L, Bolletta F, Montalti M, Zaccheroni N (2000) Luminescent chemosensors for transition metal ions. Coord Chem Rev 205:59–83

    Article  CAS  Google Scholar 

  41. Wang S, Men G, Zhao L, Hou Q, Jiang S (2010) Binaphthyl-derived salicylidene Schiff base for dual-channel sensing of Cu, Zn cations and integrated molecular logic gates. Sensors and Actuators B Chem 145:826–831

    Article  CAS  Google Scholar 

  42. Hijji YM, Barare B, Kennedy AP, Butcher R (2009) Synthesis and photophysical characterization of a Schiff base as anion sensor. Sensors Actuators B Chem 136:297–302

    Article  CAS  Google Scholar 

  43. Berhanu AL, Mohiuddin i, Malik AK, Aulakh JS, Kumar V, Kim KH (2019) A review of the applications of Schiff bases as optical chemical sensors. Trends Anal Chem 116:74–91

    Article  CAS  Google Scholar 

  44. Mcdonagh C, Burke CS, Maccraith BD (2008) Optical chemical sensors 353:400–422

    Google Scholar 

  45. Adhikari N, Saha N (2006) Synthesis and spectroscopic characterisation of cobalt (II), nickel (II) and copper (II) complexes with 5-methyl-1-(2’-pyridyl)pyrazole-3-carbohydrazide. J Chem Res 6:645–648

    Article  Google Scholar 

  46. Soc C, Andre J (2015) Molecules with a sense of logic : a progress report. Chem Soc Rev 44:1053–1069

    Article  Google Scholar 

  47. De Silva AP, Uchiyama S (2011) Molecular logic gates and luminescent sensors based on photoinduced electron transfer, luminescence applied in sensor. Science 300:1–28

    Google Scholar 

  48. Dreos A, Wang Z, Tebikachew B E, Moth-Poulsen K, Andréasson J (2018) A three-input molecular keypad lock based on a norbornadiene-quadricyclane photoswitch. J Phys Chem Lett 9:6174–6178

  49. Bhat MP, Kigga M, Govindappa H, Patil P, Jung H, Yu J, Kurkuri M (2019) A reversible fluoride chemosensor for the development of multi-input molecular logic gates New. J Chem 43:12734–12743

    CAS  Google Scholar 

  50. Safin DA, Robeyns K, Garcia Y (2012) Solid-state thermo- and photochromism in N, N′-bis(5-X-salicylidene) diamines (X = H, Br). RSC Adv 2:11379–11388

    Article  CAS  Google Scholar 

  51. Dolai M, Saha U, Das AK, Kumar GS (2018) Single sensors for multiple analytes employing fluorometric differentiation for Cr3+ and Al3+ in semi-aqueous medium with bio-activity and theoretical aspects. Anal Methods 10:4063–4072

    Article  CAS  Google Scholar 

  52. Saha U, Dolai M, Kumar GS (2019) Adaptable sensor for paying fluorometric detection of methanol molecules: theoretical aspects and DNA binding studies. New J Chem 43:8982–8992

    Article  CAS  Google Scholar 

  53. Kowser Z, Rayhan U, Rahman S, Georghiou PE, Yamato T (2017) A fluorescence “turn-on” sensor for multiple analytes: OAc and F triggered fluorogenic detection of Zn2+ in a co-operative fashion. Tetrahedron 73:5418–5424

    Article  CAS  Google Scholar 

  54. Das B, Dolai M, Dhara A, Mabhai S, Jana A, Dey S, Misra A (2021) Acetate ion augmented fluorescence sensing of Zn2+ by Salen-based probe, AIE character, and application for picric acid detection. Anal Sci Adv 2:447–463

    Article  CAS  Google Scholar 

  55. Das B, Dolai M, Ghosh A, Dhara A, Das Mahapatra A, Chattopadhyay D, Mabhai S, Jana A, Dey S, Misra A (2021) A bio-compatible pyridine–pyrazole hydrazide based compartmental receptor for Al3+ sensing and its application in cell imaging. Anal Methods 13:4266–4279

    Article  CAS  PubMed  Google Scholar 

  56. Xu Y, Pang Y (2011) Zn2+-triggered excited-state intramolecular proton transfer: a sensitive probe with near-infrared emission from bis(benzoxazole) derivative. Dalt Trans 40:1503–1509

    Article  CAS  Google Scholar 

  57. Kwon JE, Park SY (2011) Advanced organic optoelectronic materials: harnessing excited-state intramolecular proton transfer (ESIPT) process. Adv Mater 23:3615–3642

    Article  CAS  PubMed  Google Scholar 

  58. Shahid M, Misra A (2017) Photoenolization via excited state proton transfer and ion sensing studies of hydroxy imidazole derivatives. J Photochem Photobiol A Chem 335:190–199

    Article  CAS  Google Scholar 

  59. Sun W, Li S, Hu R, Qian Y, Wang S, Yang G (2009) Understanding solvent effects on luminescent properties of a triple fluorescent ESIPT compound and application for white light emission. J Phys Chem A 113:5888–5895

    Article  CAS  PubMed  Google Scholar 

  60. Jana A, Das B, Mandal SK, Mabhai S, Khuda-Bukhsh AR, Dey S (2016) Deciphering the CHEF-PET-ESIPT liaison mechanism in a Zn2+ chemosensor and its applications in cell imaging study. New J Chem 40:5976–5984

    Article  CAS  Google Scholar 

Download references

Acknowledgements

M. Dolai thanks to Prabhat Kumar College, Contai for the constant support for carrying out the research. S. Pakrashy acknowledges CSIR-NET, New Delhi for the support of fellowship. This work was funded by the researcher supporting project (RSP-2021/259), King Saud University, Riyadh, Saudi Arabia.

Funding

All the funders have been acknowledged in the acknowledgement section.

Author information

Authors and Affiliations

Authors

Contributions

All the authors (B. Das, S. Pakrashy, G. Das, U. Das, F. A. Alasmary, S. M. Wabaidur, M. A. Islam, and M. Dolai) contributed to the study conception and made substantial contribution while preparing the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Malay Dolai.

Ethics declarations

Ethical Approval

Not applicable.

Consent for Publication

Not applicable.

Consent to Participate

Not applicable.

Competing Interests

There is no conflict of interest while preparing the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 1658 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, B., Pakrashy, S., Das, G.C. et al. Fashionable Co-operative Sensing of Bivalent Zn2+ and Cd2+ in Attendance of OAc by Use of Simple Sensor: Exploration of Molecular Logic Gate and Docking Studies. J Fluoresc 32, 1263–1277 (2022). https://doi.org/10.1007/s10895-022-02980-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-022-02980-9

Keywords

Navigation