Skip to main content
Log in

Nitrogen-Doped and Surface Functionalized CDs: Fluorescent Probe for Cellular Imaging and Environmental Sensing of ClO

  • Original Article
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A novel nitrogen doped and surface functionalized fluorescent CDs (T1) was synthesized by one-step and green hydrothermal method, which exhibits a satisfactory fluorescence quantum yield and a series of admirable features such as good aqueous solubility, narrow particle size distribution, resistance to photobleaching as well as excitation-dependent behavior. Benefitting from above merits, T1 can be employed to serve as an outstanding sensing platform for sensitive and accurate detection of ClO by remarkable fluorescence “on–off” process with rapid and anti-interference. More notably, the good biocompatibility and photostability can ensure enormous bioimaging potential and successful application of T1 in monitoring of exogenous ClO in MG-63 cells. Meanwhile, T1 can also be regarded as a filter paper sensor providing a convenient and efficient analyzing technology for monitoring of free residual chlorine in practical environmental samples. All these results demonstrate that there exists promising possibility for practical applications of T1 in bioimaging systems and environmental monitoring.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article and its supplementary information file.

References

  1. Chen XQ, Tian XZ, Shin I, Yoon J (2011) Fluorescent and luminescent probes for detection of reactive oxygen and nitrogen species. Chem Soc Rev 40:4783–4804. https://doi.org/10.1039/c1cs15037e

    Article  CAS  PubMed  Google Scholar 

  2. Wu LL, Sedgwick AC, Sun XL, Bull SD, He XP, James TD (2019) Reaction-based fluorescent probes for the detection and imaging of reactive oxygen, nitrogen, and sulfur species. Acc Chem Res 52:2582–2597. https://doi.org/10.1021/acs.accounts.9b00302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zheng MH, Hu X, Wang XW, Liu XL, Jin JY (2016) Fluorescence-enhanced sensing of hypochlorous acid based on 2-pyridylthiazole unit. J Fluorec 26:593–598. https://doi.org/10.1007/s10895-015-1745-4

    Article  CAS  Google Scholar 

  4. Li XH, Gao XH, Shi W, Ma HM (2014) Design strategies for water-soluble small molecular chromogenic and fluorogenic probes. Chem Rev 114:590–659. https://doi.org/10.1021/cr300508p

    Article  CAS  PubMed  Google Scholar 

  5. Hou JT, Zhang M, Liu Y, Ma XF, Duan R, Cao XH, Yuan FY, Liao YX, Wang S, Ren WX (2020) Fluorescent detectors for hydroxyl radical and their applications in bioimaging: a review. Coord Chem Rev 421:213457–213473. https://doi.org/10.1016/j.ccr.2020.213457

    Article  CAS  Google Scholar 

  6. Ramsey MR, Sharpless NE (2006) ROS as a tumour suppressor. Nat Cell Biol 8:1213–1215. https://doi.org/10.1038/ncb1106-1213

    Article  CAS  PubMed  Google Scholar 

  7. Dai YJ, Ding YM, Li LL (2021) Nanozymes for regulation of reactive oxygen species and disease therapy. Chin Chem Lett 32:2715–2728. https://doi.org/10.1016/j.cclet.2021.03.036

    Article  CAS  Google Scholar 

  8. Hammer A, Desoye G, Dohr G, Sattler W, Malle E (2001) Myeloperoxidase-dependent generation of hypochlorite-modified proteins in human placental tissues during normal pregnancy. Lab Invest 81:543–554. https://doi.org/10.1038/labinvest.3780263

    Article  CAS  PubMed  Google Scholar 

  9. Shen SL, Zhao X, Zhang XF, Liu XL, Wang H, Dai YY, Miao JY, Zhao BX (2017) A mitochondria-targeted ratiometric fluorescent probe for hypochlorite and its applications in bioimaging. J Mater Chem B 5:289–295. https://doi.org/10.1039/c6tb01992g

    Article  CAS  PubMed  Google Scholar 

  10. Prokopowicz ZM, Arce F, Biedron R, Chiang CLL, Ciszek M, Katz DR, Nowakowska M, Zapotoczny S, Marcinkiewicz J, Chain BM (2010) Hypochlorous acid: a natural adjuvant that facilitates antigen processing, cross-priming, and the induction of adaptive immunity. J Immunol 184:824–835. https://doi.org/10.4049/jimmunol.0902606

    Article  CAS  PubMed  Google Scholar 

  11. Mathon NF, Lloyd AC (2001) Cell senescence and cancer. Nat Rev Cancer 1:203–213. https://doi.org/10.1038/35106045

    Article  CAS  PubMed  Google Scholar 

  12. Kalyanaraman B (2021) Reactive oxygen species, proinflammatory and immunosuppressive mediators induces in COVID-19: overlapping biology with cancer. RSC Chem Biol 2:1402–1414. https://doi.org/10.1039/d1cb00042j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hammerschmidt S, Vogel T, Jockel S, Gessner C, Seyfarth HJ, Gillissen A, Wirtz H (2007) Protein kinase C inhibition attenuates hypochlorite-induced acute lung injury. Respir Med 101:1205–1211. https://doi.org/10.1016/j.rmed.2006.11.003

  14. Hammerschmidt S, Wahn H (2004) The oxidants hypochlorite and hydrogen peroxide induce distinct patterns of acute lung injury. Biochim Biophys Acta 1690:258–264. https://doi.org/10.1016/j.bbadis.2004.07.003

    Article  CAS  PubMed  Google Scholar 

  15. Panasenko OM, Gorudko IV, Sokolov AV (2013) Hypochlorous acid as a precursor of free radicals in living systems. Biochemistry 78:1466–1489. https://doi.org/10.1134/S0006297913130075

    Article  CAS  PubMed  Google Scholar 

  16. Perez-Vilar J, Boucher RC (2004) Reevaluating gel-forming mucins’ roles in cystic fibrosis lung disease. Free Radic Biol Med 37:1564–1577. https://doi.org/10.1016/j.freeradbiomed.2004.07.027

    Article  CAS  PubMed  Google Scholar 

  17. Andersen JK (2004) Oxidative stress in neurodegeneration: cause or consequence. Nat Med 10:S18-25. https://doi.org/10.1038/nrn1434

    Article  CAS  PubMed  Google Scholar 

  18. Slaughter RJ, Watts M, Vale JA, Grieve JR, Schep LJ (2019) The clinical toxicology of sodium hypochlorite. Clin Toxicol 57:303–311. https://doi.org/10.1080/15563650.2018.1543889

    Article  CAS  Google Scholar 

  19. Dong YQ, Li GL, Zhou NN, Wang RX, Chi YW, Chen GN (2012) Graphene quantum dot as a green and facile sensor for free chlorine in drinking water. Anal Chem 84:8378–8382. https://doi.org/10.1021/ac301945z

    Article  CAS  PubMed  Google Scholar 

  20. Tang YR, Su YY, Yang N, Zhang LC, Lv Y (2014) Carbon nitride quantum dots: a novel chemiluminescence system for selective detection of free chlorine in water. Anal Chem 86:4528–4535. https://doi.org/10.1021/ac5005162

    Article  CAS  PubMed  Google Scholar 

  21. Meng YT, Zhang HL, Li ML, Lu WJ, Liu Y, Gong XJ, Shuang SM, Dong C (2021) A facile synthesis of long-wavelength emission nitrogen-doped carbon dots for intracellular pH variation and hypochlorite sensing. Biomater Sci 9:2255–2261. https://doi.org/10.1039/d0bm02047h

    Article  CAS  PubMed  Google Scholar 

  22. Murata M, Ivandini TA, Shibata M, Nomura S, Fujishima A, Einaga Y (2008) Electrochemical detection of free chlorine at highly boron-doped diamond electrodes. J Electroanal Chem 612:29–36. https://doi.org/10.1016/j.jelechem.2007.09.006

    Article  CAS  Google Scholar 

  23. Gallina A, Pastore P, Magno F (1999) The use of nitrite ion in the chromatographtic determination of large amounts of hypochlorite ion and traces of chlorite and chlorate ions. Analyst 124:1439–1442. https://doi.org/10.1039/A904562G

    Article  CAS  Google Scholar 

  24. Buxton GV, Subhani MS (1972) Radiation chemistry and photochemistry of oxychlorine ions part 1. -radiolysis of aqueous solutions of hypochlorite and chlorite ions. J Chem Soc 68:947–957. https://doi.org/10.1039/F19726800947

    Article  CAS  Google Scholar 

  25. Yin BD, Deng JH, Peng X, Long Q, Zhao JN, Lu QJ, Chen Q, Li HT, Tang H, Zhang YY, Yao SZ (2013) Green synthesis of carbon dots with down- and up-conversion fluorescent properties for sensitive detection of hypochlorite with dual-readout assay. Analyst 138:6551–6557. https://doi.org/10.1039/C3AN01003A

    Article  CAS  PubMed  Google Scholar 

  26. Zhang HL, Gao YF, Jiao Y, Lu WJ, Shuang SM, Dong C (2020) Highly sensitive carbon dots fluorescent probe with ratiometric emission for the determination of ClO. Analyst 145:2212–2218. https://doi.org/10.1039/C9AN02570G

    Article  CAS  PubMed  Google Scholar 

  27. Zhang C, Liu ML, Li TT, Liu SJ, Chen Q, Zhang J, Zhang K (2020) One-pot hydrothermal synthesis of dual-emission fluorescent carbon dots for hypochlorous acid detection. Dyes Pigm 180:10857–10863. https://doi.org/10.1016/j.dyepig.2020.108507

    Article  CAS  Google Scholar 

  28. Yan LQ, Hu CJ, Li JP (2018) A fluorescence turn-on probe for rapid monitoring of hypochlorite based on coumarin Schiff base. Anal Bioanal Chem 410:7457–7464. https://doi.org/10.1007/s00216-018-1352-8

    Article  CAS  PubMed  Google Scholar 

  29. Wang CJ, Qian Y (2019) A TCIT-active orthogonal D-A type probe phenothiazine-BODIPY for ratiometric response of hypochlorite and its application in living cells. J Lumin 210:261–268. https://doi.org/10.1016/j.jlumin.2019.02.044

    Article  CAS  Google Scholar 

  30. Shanmugaraj K, Ilanchelian M (2017) Visual and optical detection of hypochlorite in water samples based on etching of gold/silver alloy nanoparticles. New J Chem 41:14130–14136. https://doi.org/10.1039/C7NJ02682J

    Article  CAS  Google Scholar 

  31. Zhou Y, Xü HJ, Li XJ, Lü CW, An Y (2022) Synthesis and mechanism study of two similar colorimetric fluorescent probes for specific detection of bisulfite and hypochlorite. Res Chem Intermed 48:85–100. https://doi.org/10.1007/s11164-021-04625-1

    Article  Google Scholar 

  32. Tong HJ, Zhang YJ, Ma SN, Zhang MH, Wang N, Wang R, Lou KY, Wang W (2018) A pinacol boronate caged NIAD-4 derivative as a near-infrared fluorescent probe for fast and selective detection of hypochlorous acid. Chin Chem Lett 29:139–142. https://doi.org/10.1016/j.cclet.2017.07.007

    Article  CAS  Google Scholar 

  33. Wang KJ, Xi DZ, Liu CT, Chen YH, Gu H, Jiang L, Chen XQ, Wang F (2020) A ratiometric benzothiazole-based fluorescence probe for selectively recognizing HClO and its practical applications. Chin Chem Lett 31:2955–2959. https://doi.org/10.1016/j.cclet.2020.03.064

    Article  CAS  Google Scholar 

  34. Yang Z, Li H, Xu TT, Liu XR, Zhao SS, Yang ZW (2020) Azaaromatic functionalized rhodamine based fluorescent probes for selective dual channel detection of ClO and Cu2+ in water samples and living cells. Chem Lett 49:1278–1281. https://doi.org/10.1246/cl.200491

    Article  CAS  Google Scholar 

  35. Liu MW, Bai YX, He Y, Zhou JZ, Ge YL, Zhou JG, Song GW (2021) Facile microwave-assisted synthesis of Ti3C2 MXene quantum dots for ratiometric fluorescence detection of hypochlorite. Microchim Acta 188:15–22. https://doi.org/10.1007/s00604-020-04668-y

    Article  CAS  Google Scholar 

  36. Wang Y, Zhang P, Lu Q, Wang Y, Fu WS, Tan Q, Luo WP (2018) Water-soluble MoS2 quantum dots are a viable fluorescent probe for hypochlorite. Microchim Acta 185:233–238. https://doi.org/10.1007/s00604-018-2768-8

    Article  CAS  Google Scholar 

  37. Sharma N, Yun K (2020) Dual sensing of tetracycline and L-Lysine using green synthesizes carbon dots from nigella sativa seeds. Dyes Pigm 182:108640–108648. https://doi.org/10.1016/j.dyepig.2020.108640

    Article  CAS  Google Scholar 

  38. Wang DM, Xu H, Zheng BZ, Li Y, Liu MP, Du J, Xiao D (2015) N-doped carbon dots with high sensitivity and selectivity for hypochlorous acid detection and its application in water. Anal Methods 7:5311–5317. https://doi.org/10.1039/c5ay00944h

    Article  CAS  Google Scholar 

  39. Zhang ZW, Pei K, Yang QL, Dong JY, Yan ZY, Chen JQ (2018) Nanosensor of sulfur-nitrogen co-doped carbon dots for “off-on” sensing of hypochlorous acid and Zn(II) and its bioimaging. New J Chem 42:15895–15904. https://doi.org/10.1039/C8NJ03159B

    Article  CAS  Google Scholar 

  40. Shi LY, Zhou GH, Xiang X, Zhang Z, Jia YM, Liu PL, Li ZG (2020) Nitrogen-sulfur co-doped pH-insensitive fluorescent carbon dots for high sensitive and selective hypochlorite detection. Spectrochim Acta A 242:118721–118728. https://doi.org/10.1016/j.saa.2020.118721

    Article  CAS  Google Scholar 

  41. Nie YJ, Wang SH, Lin YX, Lai WQ, Weng W, Tang DP (2021) Highly sensitive fluorescent probe for selective detection of hypochlorite ions using nitrogen-fluorine co-doped carbon nanodots. Spectrochim Acta A 250:119231–119237. https://doi.org/10.1016/j.saa.2020.119231

    Article  CAS  Google Scholar 

  42. Wei ZN, Li HQ, Liu SB, Wang W, Chen HL, Xiao LH, Ren CL, Chen XG (2019) Carbon dots as fluorescent/colorimetric probes for real-time detection of hypochlorite and ascorbic acid in cells and body fluid. Anal Chem 91:15477–15483. https://doi.org/10.1021/acs.analchem.9b03272

    Article  CAS  PubMed  Google Scholar 

  43. Zhang Q, Song HH, Yu MM, Zhang HY, Li ZX (2021) Preparation of yellow fluorescent N, O-CDs and its application in detection of ClO. J Fluorec 31:659–666. https://doi.org/10.1007/s10895-021-02686-4

    Article  CAS  Google Scholar 

  44. Jiao Y, Meng YT, Lu WJ, Gao YF, Liu Y, Gong XJ, Liu Y, Shuang SM, Dong C (2020) Design of long-wavelength emission carbon dots for hypochlorous detection and cellular imaging. Talanta 219:121170–121177. https://doi.org/10.1016/j.talanta.2020.121170

    Article  CAS  PubMed  Google Scholar 

  45. Omer KM (2018) Highly passivated phosphorous and nitrogen co-doped carbon quantum dots and fluorometric assay for detection of copper ions. Anal Bioanal Chem 410:6331–6336. https://doi.org/10.1007/s00216-018-1242-0

    Article  CAS  PubMed  Google Scholar 

  46. Yu HL, Lv XF, Wu LL, Li BQ, Huang KC, Huang YQ, Zhang QQ, Mei CM, Ren XS, Zhou R, Luo H, Pang PF, Shan H (2020) Doxorubicin-loaded fluorescent carbon dots with PEI passivation as a drug delivery system for cancer therapy. Nanoscale 12:17222–17237. https://doi.org/10.1039/d0nr01236j

    Article  CAS  Google Scholar 

  47. Ali HRH, Hassan AI, Hassan YF, El-Wekil MM (2020) Development of dual function polyamine-functionalized carbon dots derived from one step green synthesis for quantitation of Cu2+ and S2- ions in complicated matrices with high selectivity. Anal Bioanal Chem 412:1353–1363. https://doi.org/10.1007/s00216-019-02362-4

    Article  CAS  PubMed  Google Scholar 

  48. Tao SY, Lu SY, Geng YJ, Zhu SJ, Redfern S, Song YB, Feng TL, Xu WQ, Yang B (2018) Design of metal-free polymer carbon dots: a new class of room-temperature phosphorescent materials. Angew Chem Int Ed 57:6216–6220. https://doi.org/10.1002/anie.201712662

    Article  CAS  Google Scholar 

  49. Jiang K, Wang YH, Gao XL, Cai CZ, Lin HW (2018) Facile, quick, and gram-scale synthesis of ultralong room temperature phosphorescent carbon dots by microwave irradiation. Angew Chem Int Ed 57:2393–2398. https://doi.org/10.1002/anie.201802441

    Article  CAS  Google Scholar 

  50. Demas JN, Crosby GA (1971) The measurement of photoluminescence quantum yields. a review. J Phys Chem 75:991–1024. https://doi.org/10.1021/j100678a001

    Article  Google Scholar 

  51. Wang ZX, Jin X, Gao YF, Kong FY, Wang WJ, Wang W (2019) Fluorometric and colorimetric determination of hypochlorite using carbon nanodots doped with boron and nitrogen. Microchim Acta 186:328–336. https://doi.org/10.1007/s00604-019-3443-4

    Article  CAS  Google Scholar 

  52. Yang J, Jin XL, Cheng Z, Zhou HW, Gao LN, Jiang DL, Jie X, Ma YT, Chen WX (2021) Facile and green synthesis of bifunctional carbon dots for detection of Cu2+ and ClO in aqueous solution. ACS Sustain Chem Eng 9:13206–13214. https://doi.org/10.1021/acssuschemeng.1c03868

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by [National Natural Science Foundation of China] (Grant numbers [22179107], [22077099], [21807087], [21701131] and [U1903133]); [Key Research and Development Plan in Shaanxi Province of China] (Grant number [2019KWZ–07]); [Technology Innovation Leading Program of Shaanxi] (Grant number [2020TG–031]); [Shaanxi Provincial Natural Science Fund Project] (Grant number [2018JQ2061]); [Xi’an City Science and Technology Project] (Grant number [2020KJRC0115]); [Outstanding Youth Science Fund of Xi’an University of Science and Technology] (Grant number [2018YQ3–14]).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: [Tiantian Xu], [Hui Li]; Data curation: [Tiantian Xu]; Writing-review and editing: [Tiantian Xu]; Software: [Hui Li]; Writing-original draft: [Hui Li]; Validation: [Haonan Yang]; Investigation: [Haonan Yang]; Supervision: [Zheng Yang]; Methodology: [Zheng Yang]; Funding acquisition: [Zheng Yang], [Xiaodan Jia] and [Xiangrong Liu]; Visualization: [Xiaodan Jia], [Shunsheng Zhao]; Formal analysis: [Shunsheng Zhao], [Zaiwen Yang]; Resources: [Zaiwen Yang]; Project management: [Xiangrong Liu].

Corresponding author

Correspondence to Zheng Yang.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Competing Interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 416 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, T., Li, H., Yang, H. et al. Nitrogen-Doped and Surface Functionalized CDs: Fluorescent Probe for Cellular Imaging and Environmental Sensing of ClO. J Fluoresc 32, 1591–1600 (2022). https://doi.org/10.1007/s10895-022-02952-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-022-02952-z

Keywords

Navigation