Skip to main content
Log in

Green Chemical Synthesis of N-Cholyl-L-Cysteine Encapsulated Gold Nanoclusters for Fluorometric Detection of Mercury Ions

  • Original Article
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Herein we report a simple, single-step, cost-effective, environmentally friendly, and biocompatible approach using sodium salt of N-cholyl-L-cysteine (NaCysC) capped gold nanoclusters (AuNCs) with green emission properties at above the CMC in aqueous medium under UV-light irradiation. The primary and secondary CMC of NaCysC was found to be 4.6 and 10.7 mM respectively using pyrene as fluorescent probe. The synthesized AuNCs exhibit strong emission maxima at 520 nm upon excitation at 375 nm with a large Stokes shift of 145 nm. The surface functionality and morphology of NCs are studied by fourier transform infrared spectroscopy, dymanic light scattering studies and transmission electron microscopy. The formation of AuNCs was completed within 5 h and exhibit high stability for more than 6 months. The NaCysC templated AuNCs selectively quenches the Hg2+ ions with higher sensitivity in aqueous solution over the other metal ions. The fluorescence analysis of Hg2+ showed a wide linear range from 15 to 120 µM and a detection limit was found to be 15 nM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 1
Scheme 2

Similar content being viewed by others

Availability of Data and Material

The data that support the findings of this study are available from the corresponding author. (JK) upon reasonable request.

References

  1. Zheng J, Nicovich PR, Dickson RM (2007) Highly fluorescent noble-metal quantum dots. Annu Rev Phys Chem 58:409–431. https://doi.org/10.1146/annurev.physchem.58.032806.104546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Jin R, Zeng C, Zhou M, Chen Y (2016) Atomically precise colloidal metal nanoclusters and nanoparticles: Fundamentals and opportunities. Chem Rev 116:10346–10413. https://doi.org/10.1021/acs.chemrev.5b00703

    Article  CAS  PubMed  Google Scholar 

  3. Zhang L, Wang E (2014) Metal nanoclusters: New fluorescent probes for sensors and bioimaging. Nano Today 9:132–157. https://doi.org/10.1016/j.nantod.2014.02.010

    Article  CAS  Google Scholar 

  4. Zheng J, Zhang C, Dickson RM (2004) Highly fluorescent, water-soluble, size-tunable gold quantum dots. Phys Rev Lett 93:077402. https://doi.org/10.1103/PhysRevLett.93.077402

    Article  CAS  PubMed  Google Scholar 

  5. Huma Z-e, Gupta A, Javed I, Das R, Hussain SZ, Mumtaz S (2018) Cationic silver nanoclusters as potent antimicrobials against multidrug-resistant bacteria. ACS Omega 3:16721–16727. https://doi.org/10.1021/acsomega.8b02438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Shiang Y-C, Huang C-C, Chen W-Y, Chen P-C, Chang H-T (2012) Fluorescent gold and silver nanoclusters for the analysis of biopolymers and cell imaging. J Mater Chem 22:12972–12982. https://doi.org/10.1039/C2JM30563A

    Article  CAS  Google Scholar 

  7. Shang L, Xu J, Nienhaus GU (2019) Recent advances in synthesizing metal nanocluster-based nanocomposites for application in sensing, imaging and catalysis. Nano Today 28:100767. https://doi.org/10.1016/j.nantod.2019.100767

    Article  Google Scholar 

  8. Lin Y-C, Wu T, Lin Y-W (2018) Fluorescence sensing of mercury(II) and melamine in aqueous solutions through microwave-assisted synthesis of egg-white-protected gold nanoclusters. Anal Methods 10:1624–1632. https://doi.org/10.1039/C8AY00308D

    Article  CAS  Google Scholar 

  9. Kumar V, Vaid K, Sarawagi N, Dhiman J (2021) Influence of Fe(III) on the fluorescence of Lysozyme: a Facile and direct method for sensitive and selective sensing of Fe(III). J Fluoresc. https://doi.org/10.1007/s10895-021-02813-1

    Article  PubMed  Google Scholar 

  10. Li N, He Y, Ge Y, Song G (2017) Turn-off-on fluorescence switching of ascorbic acid-reductive silver nanoclusters: a sensor for ascorbic acid and arginine in biological fluids. J Fluoresc 27:293–302. https://doi.org/10.1007/s10895-016-1957-2

    Article  CAS  PubMed  Google Scholar 

  11. Qian H, Zhu M, Wu Z, Jin R (2012) Quantum sized gold nanoclusters with atomic precision. Acc Chem Res 45:1470–1479. https://doi.org/10.1021/ar200331z

    Article  CAS  PubMed  Google Scholar 

  12. Choi S, Dickson RM, Yu J (2012) Developing luminescent silver nanodots for biological applications. Chem Soc Rev 41:1867–1891. https://doi.org/10.1039/C1CS15226B

    Article  CAS  PubMed  Google Scholar 

  13. Liu S, Lu F, Zhu J-J (2011) Highly fluorescent Ag nanoclusters: microwave-assisted green synthesis and Cr3+ sensing. Chem Commun 47:2661–2663. https://doi.org/10.1039/C0CC04276E

    Article  CAS  Google Scholar 

  14. Kawasaki H, Hamaguchi K, Osaka I, Arakawa R (2011) pH dependent synthesis of pepsin-mediated gold nanoclusters with blue green and red fluorescent emission. Adv Func Mater 21:3508–3515. https://doi.org/10.1002/adfm.201100886

    Article  CAS  Google Scholar 

  15. Aldeek F, Muhammed MAH, Palui G, Zhan N, Mattoussi H (2013) Growth of highly fluorescent polyethylene glycol- and zwitterion-functionalized gold nanoclusters. ACS Nano 7:2509–2521. https://doi.org/10.1021/nn305856t

    Article  CAS  PubMed  Google Scholar 

  16. Shen J, Bi Y, Liu B, Xiao Q, Yu Y, Qi W (2019) Co-assembly of gold nanocluster with imidazolium surfactant into ordered luminescent fibers based on aggregation induced emission strategy. J Mol Liq 291:111275. https://doi.org/10.1016/j.molliq.2019.111275

    Article  CAS  Google Scholar 

  17. Liu G, Shao Y, Ma K, Cui Q, Wu F, Xu S (2012) Synthesis of DNA-templated fluorescent gold nanoclusters. Gold Bulletin 45:69–74. https://doi.org/10.1007/s13404-012-0049-6

    Article  CAS  Google Scholar 

  18. Alkilany AM, Alsotari S, Alkawareek MY, Abulateefeh SR (2019) Facile hydrophobication of glutathione-protected gold nanoclusters and encapsulation into poly(lactide-co-glycolide) nanocarriers. Sci Rep 9:11098. https://doi.org/10.1038/s41598-019-47543-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jung J, Kang S, Han Y-K (2012) Ligand effects on the stability of thiol-stabilized gold nanoclusters: Au25(SR)18−, Au38(SR)24, and Au102(SR)44. Nanoscale 4:4206–4210. https://doi.org/10.1039/C2NR30501A

    Article  CAS  PubMed  Google Scholar 

  20. Tran ML, Zvyagin AV, Plakhotnik T (2006) Synthesis and spectroscopic observation of dendrimer-encapsulated gold nanoclusters. Chem Commun. https://doi.org/10.1039/B602079H.2400-1.10.1039/B602079H

    Article  Google Scholar 

  21. Zheng J, Petty JT, Dickson RM (2003) High quantum yield blue emission from water-soluble au8 nanodots. J Am Chem Soc 125:7780–7781. https://doi.org/10.1021/ja035473v

    Article  CAS  PubMed  Google Scholar 

  22. Qu X, Li Y, Li L, Wang Y, Liang J, Liang J (2015) Fluorescent gold nanoclusters: synthesis and recent biological application. J Nanomater 2015:784097. https://doi.org/10.1155/2015/784097

    Article  Google Scholar 

  23. Zhang J, Cheng F, Li J, Zhu J-J, Lu Y (2016) Fluorescent nanoprobes for sensing and imaging of metal ions: Recent advances and future perspectives. Nano Today 11:309–329. https://doi.org/10.1016/j.nantod.2016.05.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jan AT, Azam M, Siddiqui K, Ali A, Choi I, Haq QMR (2015) Heavy metals and human health: mechanistic insight into toxicity and counter defense system of antioxidants. Int J Mol Sci. https://doi.org/10.3390/ijms161226183

    Article  PubMed  PubMed Central  Google Scholar 

  25. Senthil Kumar P, Saravanan A (2017) Sustainable wastewater treatments in textile sector. In Muthu SS, editor. Sustainable Fibres and Textiles. Woodhead Publishing 323–346. https://doi.org/10.1016/B978-0-08-102041-8.00011-1

  26. Sahu D, Mohapatra P, Swain SK (2020) Highly orange fluorescence emission by water soluble gold nanoclusters for “turn off” sensing of Hg2+ ion. J Photochem Photobiol A 386:112098. https://doi.org/10.1016/j.jphotochem.2019.112098

    Article  CAS  Google Scholar 

  27. Yang Y, Lu L, Tian X, Li Y, Yang C, Nie Y (2019) Ratiometric fluorescence detection of mercuric ions by sole intrinsic dual-emitting gold nanoclusters. Sens Actuators B Chem 278:82–87. https://doi.org/10.1016/j.snb.2018.09.072

    Article  CAS  Google Scholar 

  28. Zhang Y, Jiang J, Li M, Gao P, Shi L, Zhang G (2017) Bright far-red/near-infrared gold nanoclusters for highly selective and ultra-sensitive detection of Hg2+. Sens Actuators B Chem 238:683–692. https://doi.org/10.1016/j.snb.2016.07.118

    Article  CAS  Google Scholar 

  29. Qiao Y, Zhang Y, Zhang C, Shi L, Zhang G, Shuang S (2016) Water-soluble gold nanoclusters-based fluorescence probe for highly selective and sensitive detection of Hg2+. Sens Actuators B Chem 224:458–464. https://doi.org/10.1016/j.snb.2015.10.080

    Article  CAS  Google Scholar 

  30. Xie J, Zheng Y, Ying JY (2010) Highly selective and ultrasensitive detection of Hg2+ based on fluorescence quenching of Au nanoclusters by Hg2+–Au+ interactions. Chem Commun 46:961–963. https://doi.org/10.1039/B920748A

    Article  CAS  Google Scholar 

  31. Qing T, He X, He D, Qing Z, Wang K, Lei Y (2016) Oligonucleotide-templated rapid formation of fluorescent gold nanoclusters and its application for Hg2+ ions sensing. Talanta 161:170–176. https://doi.org/10.1016/j.talanta.2016.08.045

    Article  CAS  PubMed  Google Scholar 

  32. Hsu N-Y, Lin Y-W (2016) Microwave-assisted synthesis of bovine serum albumin–gold nanoclusters and their fluorescence-quenched sensing of Hg2+ ions. New J Chem 40:1155–1161. https://doi.org/10.1039/C5NJ02263K

    Article  CAS  Google Scholar 

  33. Shang L, Yang L, Stockmar F, Popescu R, Trouillet V, Bruns M (2012) Microwave-assisted rapid synthesis of luminescent gold nanoclusters for sensing Hg2+ in living cells using fluorescence imaging. Nanoscale 4:4155–4160. https://doi.org/10.1039/C2NR30219E

    Article  CAS  PubMed  Google Scholar 

  34. Chandirasekar S, Chandrasekaran C, Muthukumarasamyvel T, Sudhandiran G, Rajendiran N (2016) Biosurfactant templated quantum sized fluorescent gold nanoclusters for in vivo bioimaging in zebrafish embryos. Colloids Surf B 143:472–480. https://doi.org/10.1016/j.colsurfb.2016.03.067

    Article  CAS  Google Scholar 

  35. Chandirasekar S, Chandrasekaran C, Muthukumarasamyvel T, Sudhandiran G, Rajendiran N (2015) Sodium cholate-templated blue light-emitting Ag Subnanoclusters. In vivo toxicity and imaging in Zebrafish Embryos. ACS Appl Mater Interfaces 7:1422–1430. https://doi.org/10.1021/am507291t

    Article  CAS  PubMed  Google Scholar 

  36. Annadhasan M, SankarBabu VR, Naresh R, Umamaheswari K, Rajendiran N (2012) A sunlight-induced rapid synthesis of silver nanoparticles using sodium salt of N-cholyl amino acids and its antimicrobial applications. Colloids Surf B 96:14–21. https://doi.org/10.1016/j.colsurfb.2012.03.009

    Article  CAS  Google Scholar 

  37. Annadhasan M, Rajendiran N (2015) Highly selective and sensitive colorimetric detection of Hg(ii) ions using green synthesized silver nanoparticles. RSC Adv 5:94513–94518. https://doi.org/10.1039/C5RA18106B

    Article  CAS  Google Scholar 

  38. Chandirasekar S, Dharanivasan G, Kasthuri J, Kathiravan K, Rajendiran N (2011) Facile synthesis of bile salt encapsulated gold nanoparticles and its use in colorimetric detection of DNA. J Phys Chem C 115:15266–15273. https://doi.org/10.1021/jp2044465

    Article  CAS  Google Scholar 

  39. Pomal NC, Bhatt KD, Modi KM, Desai AL, Patel NP, Kongor A (2021) Functionalized silver nanoparticles as colorimetric and fluorimetric sensor for environmentally toxic mercury ions: An overview. J Fluoresc 31:635–649. https://doi.org/10.1007/s10895-021-02699-z

    Article  CAS  PubMed  Google Scholar 

  40. Hasan A, Nanakali NMQ, Salihi A, Rasti B, Sharifi M, Attar F (2020) Nanozyme-based sensing platforms for detection of toxic mercury ions: An alternative approach to conventional methods. Talanta 215:120939. https://doi.org/10.1016/j.talanta.2020.120939

    Article  CAS  PubMed  Google Scholar 

  41. Bigdeli A, Ghasemi F, Abbasi-Moayed S, Shahrajabian M, Fahimi-Kashani N, Jafarinejad S (2019) Ratiometric fluorescent nanoprobes for visual detection: Design principles and recent advances - A review. Anal Chim Acta 1079:30–58. https://doi.org/10.1016/j.aca.2019.06.035

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Dr. J.Kasthuri is thankful to the Science and Engineering Research Board (SERB), under the scheme of Teachers Association for Research Excellence (SERB-TARE /2019/ 000111), Govt. of India, for providing financial assistance.

Funding

This work is supported by the Science and Engineering Research Board (SERB), under the scheme of Teachers Association for Research Excellence (SERB-TARE /2019/ 000111), Govt. of India.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jayapalan Kasthuri.

Ethics declarations

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

All the authors are consent to publishing the paper.

Conflict of Interest

There is no conflict to declare in our manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kasthuri, J., Sivasamy, A. & Rajendiran, N. Green Chemical Synthesis of N-Cholyl-L-Cysteine Encapsulated Gold Nanoclusters for Fluorometric Detection of Mercury Ions. J Fluoresc 32, 1347–1356 (2022). https://doi.org/10.1007/s10895-022-02935-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-022-02935-0

Keywords

Navigation