Skip to main content
Log in

Methyl viologen induced fluorescence quenching of CdTe quantum dots for highly sensitive and selective “off-on” sensing of ascorbic acid through redox reaction

  • Original Article
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A turn-on fluorescent sensor based on CdTe quantum dots (QDs) is designed for highly sensitive and selective ascorbic acid (AA) detection. CdTe shows a strong emission centered at 578 nm. When assembled with poly(sodium 4-styrenesulfonate) (PSS) and methyl viologen (Mv2+) through electrostatic interaction, the emission is found to be effectively quenched. In the presence of AA, Mv2+ is reduced to Mv+, making the fluorescence of CdTe QDs restored. Under the optimal conditions, the proposed AA sensing method shows a linear proportional response from 0.8 µM to 20 µM, with the detecting limit as low as 50 nM. The developed method was successfully applied in the analysis of AA in human serum samples and cell lysates with satisfactory results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this submitted article and its supplementary information file.

Code Availability

No applicable.

References

  1. Zhu X, Zhao T, Nie Z, Liu Y, Yao S (2015) Non-Redox Modulated Fluorescence Strategy for Sensitive and Selective Ascorbic Acid Detection with Highly Photoluminescent Nitrogen-Doped Carbon Nanoparticles via Solid-State Synthesis. Anal Chem 87(16):8524–8530. doi: https://doi.org/10.1021/acs.analchem.5b02167

    Article  CAS  PubMed  Google Scholar 

  2. Xu W, Chen J, Sun S, Tang Z, Jiang K, Song L et al (2018) Fluorescent and photoacoustic bifunctional probe for the detection of ascorbic acid in biological fluids, living cells and in vivo. Nanoscale 10(37):17834–17841. doi: https://doi.org/10.1039/C8NR03435D

    Article  CAS  PubMed  Google Scholar 

  3. Jia H, Zhao J, Qin L, Zhao M, Liu G (2019) The fabrication of an Ni6MnO8 nanoflake-modified acupuncture needle electrode for highly sensitive ascorbic acid detection. RSC Adv 9(46):26843–26849. doi: https://doi.org/10.1039/c9ra03850g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kunpatee K, Traipop S, Chailapakul O, Chuanuwatanakul S (2020) Simultaneous determination of ascorbic acid, dopamine, and uric acid using graphene quantum dots/ionic liquid modified screen-printed carbon electrode. Sens Actuat B-Chem 314:128059. doi: https://doi.org/10.1016/j.snb.2020.128059

  5. Chen H, Li R, Lin L, Guo G, Lin J-M (2010) Determination of L-ascorbic acid in human serum by chemiluminescence based on hydrogen peroxide-sodium hydrogen carbonate-CdSe/CdS quantum dots system. Talanta 81(4–5):1688–1696. doi: https://doi.org/10.1016/j.talanta.2010.03.024

    Article  CAS  PubMed  Google Scholar 

  6. Chen H, Ling B, Yuan F, Zhou C, Chen J, Wang L (2012) Chemiluminescence behaviour of CdTe-potassium permanganate enhanced by sodium hexametaphosphate and sensitized sensing of L-ascorbic acid. Luminescence 27(6):466–472. doi: https://doi.org/10.1002/bio.1376

    Article  CAS  PubMed  Google Scholar 

  7. Chen H, Li W, Zhao P, Nie Z, Yao S (2015) A CdTe/CdS quantum dots amplified graphene quantum dots anodic electrochemiluminescence platform and the application for ascorbic acid detection in fruits. Electrochim Acta 178:407–413. doi: https://doi.org/10.1016/j.electacta.2015.08.015

    Article  CAS  Google Scholar 

  8. Kong L, Gan Y, Liang T, Zhong L, Pan Y, Kirsanov D et al (2020) A novel smartphone-based CD-spectrometer for high sensitive and cost-effective colorimetric detection of ascorbic acid. Anal Chim Acta 1093:150–159. doi: https://doi.org/10.1016/j.aca.2019.09.071

    Article  CAS  PubMed  Google Scholar 

  9. Song N, Wang C, Lu X (2020) Rational Design of Hierarchical CoO/NiO Nanosheets on Conductive Polypyrrole Nanotubes for Peroxidase Mimicking and Sensing Application. ACS Sustain Chem Eng 8(30):11069–11078. doi: https://doi.org/10.1021/acssuschemeng.0c00249

    Article  CAS  Google Scholar 

  10. Sun H, Liu X, Wang X, Han Q, Qi C, Li Y et al (2020) Colorimetric determination of ascorbic acid using a polyallylamine-stabilized IrO2/graphene oxide nanozyme as a peroxidase mimic. Microchim Acta 187(2):110. doi: https://doi.org/10.1007/s00604-019-3897-4

    Article  CAS  Google Scholar 

  11. Lopez-Anaya A, Mayersohn M (1987) Ascorbic and dehydroascorbic acids simultaneously quantified in biological fluids by liquid chromatography with fluorescence detection, and comparison with a colorimetric assay. Clin Chem 33(10):1874–1878. doi: https://doi.org/10.1093/clinchem/33.10.1874

    Article  CAS  PubMed  Google Scholar 

  12. Borras E, Schrumpf L, Stephens N, Weimer BC, Davis CE, Schelegle ES (2021) Novel LC-MS-TOF method to detect and quantify ascorbic and uric acid simultaneously in different biological matrices. J Chromatogr B 1168:122588. doi: https://doi.org/10.1016/j.jchromb.2021.122588

    Article  CAS  Google Scholar 

  13. Wang J, Peng X, Li D, Jiang X, Pan Z, Chen A et al (2018) Ratiometric ultrasensitive fluorometric detection of ascorbic acid using a dually emitting CdSe@SiO2@CdTe quantum dot hybrid. Microchim Acta 185(1):42. doi: https://doi.org/10.1007/s00604-017-2557-9

  14. Dong W, Yu J, Gong X, Liang W, Fan L, Dong C (2021) A turn-off-on near-infrared photoluminescence sensor for sequential detection of Fe3+ and ascorbic acid based on glutathione-capped gold nanoclusters. Spectrochim Acta A 247:119085. doi: https://doi.org/10.1016/j.saa.2020.119085

  15. Chu X, Ning G, Zhou Z, Liu Y, Xiao Q, Huang S (2020) Bright Mn-doped carbon dots for the determination of permanganate and L-ascorbic acid by a fluorescence on-off-on strategy. Microchim Acta 187(12):659. doi: https://doi.org/10.1007/s00604-020-04604-0

  16. Sheng Y, Cao T, Xiao Y, Zhang X, Wang S, Liu Z (2019) A label-free ratiometric fluorescence nanoprobe for ascorbic acid based on redox-modulated dual-emission signals. Analyst 144(11):3511–3517. doi: https://doi.org/10.1039/C9AN00288J

    Article  CAS  PubMed  Google Scholar 

  17. Lu Q, Chen X, Liu D, Wu C, Liu M, Li H et al (2019) A turn-on fluorescent probe for vitamin C based on the use of a silicon/CoOOH nanoparticle system. Microchim Acta 186(2):72. doi: https://doi.org/10.1007/s00604-018-3181-z

  18. He M, Sun H, Wei J, Zhang R, Han Xe, Ni Z (2021) A highly sensitive, fast responsive and reversible naphthalimide-based fluorescent probe for hypochlorous acid and ascorbic acid in aqueous solution and living cells. Spectrochim Acta A 247:119138. doi: https://doi.org/10.1016/j.saa.2020.119138

  19. Matsuoka Y, Yamato M, Yamada K-i (2016) Fluorescence probe for the convenient and sensitive detection of ascorbic acid. J Clin Biochem Nutr 58(1):16–22. doi: https://doi.org/10.3164/jcbn.15-105

    Article  CAS  PubMed  Google Scholar 

  20. Nam H, Kwon JE, Choi M-W, Seo J, Shin S, Kim S et al (2016) Highly Sensitive and Selective Fluorescent Probe for Ascorbic Acid with a Broad Detection Range through Dual-Quenching and Bimodal Action of Nitronyl-Nitroxide. ACS Sens 1(4):392–398. doi: https://doi.org/10.1021/acssensors.5b00230

    Article  CAS  Google Scholar 

  21. Mo Q, Liu F, Gao J, Zhao M, Shao N (2018) Fluorescent sensing of ascorbic acid based on iodine induced oxidative etching and aggregation of lysozyme-templated silver nanoclusters. Anal Chim Acta 1003:49–55. doi: https://doi.org/10.1016/j.aca.2017.11.068

    Article  CAS  PubMed  Google Scholar 

  22. Chen P, Yan S, Sawyer E, Ying B, Wei X, Wu Z et al (2019) Rapid and simple detection of ascorbic acid and alkaline phosphatase via controlled generation of silver nanoparticles and selective recognition. Analyst 144(4):1147–1152. doi: https://doi.org/10.1039/c8an01925h

    Article  CAS  PubMed  Google Scholar 

  23. Zhu J, Zhao Z-J, Li J-J, Zhao JW (2017) Fluorescent detection of ascorbic acid based on the emission wavelength shift of CdTe quantum dots. J Lumin 192:47–55. doi: https://doi.org/10.1016/j.jlumin.2017.06.015

    Article  CAS  Google Scholar 

  24. Ding M, Wang K, Fang M, Zhu W, Du L, Li C (2020) MPA-CdTe quantum dots as “on-off-on” sensitive fluorescence probe to detect ascorbic acid via redox reaction. Spectrochim Acta A 234:118249. doi: https://doi.org/10.1016/j.saa.2020.118249

  25. Huang S, Zhu F, Xiao Q, Su W, Sheng J, Huang C et al (2014) A CdTe/CdS/ZnS core/shell/shell QDs-based “OFF-ON” fluorescent biosensor for sensitive and specific determination of L-ascorbic acid. RSC Adv 4(87):46751–46761. doi: https://doi.org/10.1039/c4ra08169b

    Article  CAS  Google Scholar 

  26. Ma Q, Li Y, Lin Z-H, Tang G, Su X-G (2013) A novel ascorbic acid sensor based on the Fe3+/Fe2+ modulated photoluminescence of CdTe quantum dots@SiO2 nanobeads. Nanoscale 5(20):9726–9731. doi: https://doi.org/10.1039/c3nr03060a

    Article  CAS  PubMed  Google Scholar 

  27. Guo Y, Du J, Li J, Yang R, Harrington PdB, Li Z (2021) An electrostatic repulsion strategy for a highly selective and sensitive “switch-on” fluorescence sensor of ascorbic acid based on the cysteamine-coated CdTe quantum dots and cerium(IV). N J Chem 45(14):6301–6307. doi: https://doi.org/10.1039/d1nj00145k

    Article  CAS  Google Scholar 

  28. Ding X, Qu L, Yang R, Zhou Y, Li J (2015) A highly selective and simple fluorescent sensor for mercury (II) ion detection based on cysteamine-capped CdTe quantum dots synthesized by the reflux method. Luminescence 30(4):465–471

    Article  CAS  Google Scholar 

  29. Janghel EK, Gupta VK, Rai MK, Rai JK (2007) Micro determination of ascorbic acid using methyl viologen. Talanta 72(3):1013–1016. doi: https://doi.org/10.1016/j.talanta.2006.12.041

    Article  CAS  PubMed  Google Scholar 

  30. Chen Y-J, Yan X-P (2009) Chemical Redox Modulation of the Surface Chemistry of CdTe Quantum Dots for Probing Ascorbic Acid in Biological Fluids. Small 5(17):2012–2018. doi: https://doi.org/10.1002/smll.200900291

    Article  CAS  PubMed  Google Scholar 

  31. Lakowicz JR (2006) Principles of Fluorescence Spectroscopy. Third Edition ed. New York: Plenum Press;

  32. Wang X, Liu Z, Gao P, Li Y, Qu X (2020) Quantum dots mediated fluorescent “turn-off-on” sensor for highly sensitive and selective sensing of protein. Colloid Surf B 185:110599. doi: https://doi.org/10.1016/j.colsurfb.2019.110599

    Article  CAS  Google Scholar 

  33. Gallagher SA, Comby S, Wojdyla M, Gunnlaugsson T, Kelly JM, Gun’ko YK et al (2013) Efficient Quenching of TGA-Capped CdTe Quantum Dot Emission by a Surface-Coordinated Europium(III) Cyclen Complex. Inorg Chem 52(8):4133–4135. doi: https://doi.org/10.1021/ic3027623

    Article  CAS  PubMed  Google Scholar 

  34. Qi Z-D, Zhou B, Qi X, Chuan S, Liu Y, Dai J (2008) Interaction of rofecoxib with human serum albumin: Determination of binding constants and the binding site by spectroscopic methods. J Photoch Photobio A 193(2):81–88. doi: https://doi.org/10.1016/j.jphotochem.2007.06.011

    Article  CAS  Google Scholar 

  35. Wu H, Tong C (2019) Ratiometric fluorometric determination of silver(I) by using blue-emitting silicon- and nitrogen-doped carbon quantum dots and red-emitting N-acetyl-L-cysteine-capped CdTe quantum dots. Microchim Acta 186(11):723. doi: https://doi.org/10.1007/s00604-019-3818-6

  36. Choudhary YS, Gomathi N (2020) Branched Ligand Ethyl 2-Mercaptopropionate as a Stabilizer for CdTe Quantum Dots and its use as a Cu2+ Ions Probe in Aqueous Medium. Chemistryselect 5(1):32–39. doi: https://doi.org/10.1002/slct.201903767

    Article  CAS  Google Scholar 

  37. Yang Y, Liu W, Cao J, Wu Y (2020) On-site, rapid and visual determination of Hg2+ and Cu2+ in red wine by ratiometric fluorescence sensor of metal-organic frameworks and CdTe QDs. Food Chem 328:127119. doi: https://doi.org/10.1016/j.foodchem.2020.127119

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (U1804136) and Zhongyuan thousand talents plan in 2019 (202101510005).

Author information

Authors and Affiliations

Authors

Contributions

Qianqian Zhu: Investigation, Formal analysis, Methodology, Writing - review & editing. Jingjing Du: Investigation, Formal analysis, Methodology, Writing – original draft. Jianjun Li: Data curation. Jizhong Wang: Formal analysis. Ran Yang: Conceptualization, Funding acquisition, Supervision, Writing - review & editing. Zhaohui Li: Conceptualization, Data curation, Supervision. Lingbo Qu: Conceptualization, Funding acquisition, Data curation. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ran Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethics Approval

No applicable.

Consent to participate

No applicable.

Consent for publication

No applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Q., Du, J., Li, J. et al. Methyl viologen induced fluorescence quenching of CdTe quantum dots for highly sensitive and selective “off-on” sensing of ascorbic acid through redox reaction. J Fluoresc 32, 1405–1412 (2022). https://doi.org/10.1007/s10895-022-02925-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-022-02925-2

Keywords

Navigation