Skip to main content
Log in

Fluorescent Flavin/PVP-Coated Silver Nanoparticles: Design and Biological Performance

  • Original Article
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A red-emitting fluorescent Riboflavin (RF)/Polyvinylpyrrolidone (PVP)-coated silver nanoparticles system, λem = 527 nm, Φ = 0.242, with a diameter of the metallic core of 27.33 nm and a zeta potential of − 25.05 mV was prepared and investigated regarding its biological activity. We found that PVP has a key role in RF adsorption around the SNPs surface leading to an enhancement of antioxidant properties (∼70%), low cytotoxicity (> 90% cell viability, at 50 µL/mL, after 48 h of incubation) as well as to an efficient process of its cellular uptake (∼ 60%, after 24 h of incubation) in L929 cells. The results are relevant concerning the involvement of RF and its coenzymes forms in SNPs - based systems, in cellular respiration as well as for future studies as antioxidant marker system on tumoral cells for viewing and monitoring them, by cellular imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 1
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Availability of data and material

The data that support the findings of this study are contained within the article.

Code Availability

(software application or custom code): Not applicable.

References

  1. Salata OV (2004) Applications of nanoparticles in biology and medicine-Review, J. Nanobiotech., https://doi.org/10.1186/1477-3155-2-3, and references herein.

  2. Doering WE, Nie S (2002) Single-Molecule and Single-nanoparticle SERS: Examining the role of surface active sites and chemical enhancement. J Phys Chem B 106:311–317

    Article  CAS  Google Scholar 

  3. Peyser LA, Vinson AE, Bertko AP, Dickson RM (2001) Photoactivated fluorescence from individual silver nanoclusters. Science 291:103–106

    Article  CAS  PubMed  Google Scholar 

  4. Maali A, Cardinal T, Treguer-Delapierre M (2003) Intrinsic fluorescence from individual silver nanoparticles. Phys E 17:559–560

    Article  CAS  Google Scholar 

  5. Lakowicz JR (2006) Principles of Fluorescence Spectroscopy. Kluwer Academic/Plenum Publishers, New York

    Book  Google Scholar 

  6. Weiss S (1999) Fluorescence Spectroscopy of Single Biomolecules. Science 283:1676–1683

    Article  CAS  PubMed  Google Scholar 

  7. Gell C, Brockwell D, Smith A (2006) Preparation of Samples for Single Molecule Fluorescence Spectroscopy. Handbook of Single Molecule Fluorescence Spectroscopy. Oxford University Press, Oxford

    Google Scholar 

  8. Peterman EJG, Sosa H, Moerner WE (2004) Single-Molecule Fluorescence Spectroscopy and Microscopy of Biomolecular Motors. Annu Rev Phys Chem 55:79–96

    Article  CAS  PubMed  Google Scholar 

  9. Galburt EA, Grill SW, Bustamante C (2009) Single Molecule Transcription Elongation, Methods 48: 323–332,

  10. Vanzi F, Takagi Y, Shuman H, Cooperman BS, Goldman YE (2005) Mechanical Studies of Single Ribosome/mRNA Complexes. Biophys J 89:1909–1919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Blanchard SC (2009) Single-Molecule Observations of Ribosome Function. Curr Opin Struct Biol 19:103–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Niemeyer CM (2001) Nanoparticles, proteins and nucleic acids: biotechnology meets materials science. Angew Chem Int Ed 40:4128–4158

    Article  CAS  Google Scholar 

  13. Zhang A, Zhang J, Fang Y (2008) Photoluminescence from colloidal silver nanoparticles. J Lumin 128:1635–1640

    Article  CAS  Google Scholar 

  14. Das R, Nath SS, Chakdar D, Gope G, Bhattacharjee R (2010) Synthesis of silver nanoparticles and their optical properties. J Exp NanoSci 5:357–362

    Article  CAS  Google Scholar 

  15. Abdulah A, Annapoorni S (2005) Fluorescent silver nanoparticles via exploding wire technique. Prama J Phys 65:815–819

    Article  Google Scholar 

  16. Zheng J, Dickson RM (2002) Individual water soluble dendrimer-encapsulated silver nanodot fluorescence. J Am Chem Soc 124:13982–13983

    Article  CAS  PubMed  Google Scholar 

  17. Jian Z, Xiang Z, Yongchang W (2005) Electrochemical synthesis and fluorescence spectrum properties of silver nanospheres. Microelectron Eng 77:58–62

    Article  CAS  Google Scholar 

  18. Ashenfelter BA, Desireddy A, Yau SH, Goodson T, Bigioni TP (2015) Fluorescence from molecular silver nanoparticles. J Phys Chem C. doi:https://doi.org/10.1021/acs.jpcc.5b05735

    Article  Google Scholar 

  19. Oliveira E, Santos HM, Garcia-Pardo J, Diniz M, Lorenzo J, Rodriguez-Gonzalez B, Capelo JL, Lodeiro C (2013) Synthesis of functionalized of fluorescent silver nanoparticles and their toxicological effect in aquatic environments (Goldfish) and HepG2 cells. Front Chem 1:1–11

    Article  CAS  Google Scholar 

  20. Khatoon N, Ahmad R, Sardar M (2015) Robust and fluorescent silver nanoparticles using Artemisia annua: Biosynthesis, characterization and antibacterial activity. Biochem Eng J. doi:https://doi.org/10.1016/j.bej.2015.02.019

    Article  Google Scholar 

  21. Ghotekar S, Savale A, Pansambal S (2018) Phytofabrication of fluorescent silver nanoparticles from Leucaena leucocephala L. leaves and their biological activities. J Water Environ Nanotechnol 3:95–105

    CAS  Google Scholar 

  22. Dojčilović R, Pajović JD, Božanić DK, Vodnik VV, Dimitrijević-Branković S, Milosavljević AR, Kaščàkovà S, Réfrégiersg M, Djoković V (2016) A fluorescent nanoprobe for single bacterium tracking: functionalization of silver nanoparticles with tryptophan to probe the nanoparticle accumulation with single cell resolution, Analyst, doi:https://doi.org/10.1039/c5an02358k

  23. Di Pietro P, Zaccaro L, Comegna D, Del Gatto A, Saviano M, Snyders R, Cossement D, Satriano C, Rizzarelli E (2016) Silver nanoparticles functionalized with a fluorescent cyclic RGD peptide: a versatile integrin targeting platform for cells and bacteria. RSC Adv. DOI: https://doi.org/10.1039/C6RA21568H

    Article  Google Scholar 

  24. Dojcilovic R, Pajovic JD, Bozanic DK, Bogdanovic U, Vodnik VV, Dimitrijevic-Brankovic S, Miljkovic MG, Kascaková S, Réfrégiers M, Djokovica V (2017) Interaction of amino acid-functionalized silver nanoparticles and Candida albicans polymorphs: A deep-UV fluorescence imaging study. Colloid Surf B 155:341–348

    Article  CAS  Google Scholar 

  25. Voicescu M, Ionescu S, Angelescu DG (2012) Spectroscopic and Coarse-Grained Simulation Studies of the BSA and HSA Protein Adsorption on Silver Nanoparticles. J Nanopart Res 14:1174

    Article  CAS  Google Scholar 

  26. Voicescu M, Angelescu DG, Ionescu S, Teodorescu VS (2013) Spectroscopic Analysis of the Riboflavin - Serum Albumins Interaction on Silver Nanoparticles. J Nanopart Res 15:1555

    Article  CAS  Google Scholar 

  27. Voicescu M, Ionescu S, Craciunescu O, Tatia R, Moldovan L, Teodorescu VS (2017) Synthesis, Physicochemical Characterization and Cytotoxic Properties of Riboflavin loaded Myrj52-Silver Nanoparticles. New J Chem 41:5533–5541 C. L. Nistor

    Article  CAS  Google Scholar 

  28. Voicescu M, Ionescu S, Manoiu S, Anastasescu M, Craciunescu O, Moldovan L (2019) Synthesis and biophysical characteristics of riboflavin - HSA protein on silver nanoparticles. Mat Sci Eng C-Mater 96:30–40

    Article  CAS  Google Scholar 

  29. Voicescu M, Ionescu S, Calderon-Moreno JM, Teodorescu VS, Anastasescu M, Culita DC (2019) Tryptophan / Dextran70 based - Fluorescent Silver Nanoparticles: Synthesis and Physicochemical Properties, J. Fluoresc. 29:981–992

  30. Voicescu M, Craciunescu O, Angelescu DG, Tatia R, Moldovan L (2021) Spectroscopic, molecular dynamics simulation and biological studies of Flavin MonoNucleotide and Flavin Adenine Dinucleotide in biomimetic systems, Spectrochim. Acta A 246:118997

    Article  CAS  Google Scholar 

  31. Navarro JR, Werts MH (2013) Resonant light scattering spectroscopy of gold, silver and gold-silver alloy nanoparticles and optical detection in microfluidic channels. Analyst 138:583–592

    Article  CAS  PubMed  Google Scholar 

  32. Melhuish WH (1961) Quantum efficiencies of fluorescence of organic substances: effect of solvent and concentration of the fluorescent solute. J Phys Chem 65:229–235

    Article  CAS  Google Scholar 

  33. Vasilescu M, Voicescu M, Lemmetyinen H, Meghea A (2004) The oxidative activity of riboflavin studied by luminescence methods, Rom. J Biochem 41:51–63

    CAS  Google Scholar 

  34. Voicescu M, Ionita G, Constantinescu T, Vasilescu M (2006) The oxidative activity of riboflavin studied by luminescence methods: The effect of Cysteine, Arginine, Lysine and Histidine amino acids, Rev. Roum Chim 51:683–690

    CAS  Google Scholar 

  35. Voicescu M, Ionita G, Vasilescu M, Meghea A (2006) The effect of cyclodextrins on the luminol-hydrogen peroxide chemiluminescence. J Incl Phenom Macrocyclic Chem 54:217–219

    Article  CAS  Google Scholar 

  36. Voicescu M, Ionita G, Beteringhe A, Vasilescu M, Meghea A (2008) The antioxidative activity of riboflavin in the presence of antipyrine. Spectroscopic studies. J Fluoresc 18:953–959

    Article  CAS  PubMed  Google Scholar 

  37. Voicescu M, Ion R, Meghea A (2010) Evaluation of the oxidative activity of some free base porphyrins by a chemiluminescence method. J Serb Chem Soc 75:333–341

    Article  CAS  Google Scholar 

  38. Voicescu M, Nistor CL, Meghea A (2015) Insights into the Antioxidant Activity of some Flavones on Silver Nanoparticles using a Chemiluminescence Method. J Lumin 157:243–248

    Article  CAS  Google Scholar 

  39. Voicescu M, Hellwig P, Meghea A (2016) Antioxidant Activity of Phytoestrogens types Isoflavones in Biomimetic Environments. New J Chem 40:606–612

    Article  CAS  Google Scholar 

  40. Voicescu M, Neacsu G, Beteringhe A, Craciunescu O, Tatia R, Moldovan L (2017) Antioxidant and cytotoxic properties of Riboflavin in PEG/BSA Systems. Chem Pap 71:1107–1117

    Article  CAS  Google Scholar 

  41. Voicescu M, Ionescu S, Lete C (2018), Physicochemical and Antioxidant Properties of Riboflavin in Dextran70/HSA Systems. J Fluoresc 28:889–896

    Article  CAS  PubMed  Google Scholar 

  42. Gaspar, Gaspar A, Crăciunescu O, Trif M, Moisei M, Moldovan L et al (2014) Antioxidant and anti-inflammatory properties of active compounds from Arnica montana L. Rom. Biotech. Lett. 19:9353–9365, 2014

  43. Paramelle D, Sadovoy A, Gorelik S, Free P, Hobley J, Fernig DG (2014) Rapid method to estimate the concentration of citrate capped silver nanoparticles from UV-visible light spectra. Analyst 139:4855–4861

    Article  CAS  PubMed  Google Scholar 

  44. Wainwright M, Giddens RM (2003) Phenothiazinium photosensitizers: Choices in synthesis and application. Dyes Pigm 57:245–257

    Article  CAS  Google Scholar 

  45. Usacheva MN, Teichert MC, Biel MA (2003) The role of methylene blue and toluidine blue monomers and dimers in the photoinactivation of bacteria. J Photochem Photobiol B 71:87–98

    Article  CAS  PubMed  Google Scholar 

  46. Mohr H, Knuver-Hopf J, Gravemann U, Redecker-Klein A, Muller TH (2004) West Nile virus in plasma is highly sensitive to methylene blue – light treatment, Transfusion 44: 886–890

  47. Fisher AM, Murphree AL, Gomer CJ (1995) Clinical and preclinical photodynamic therapy -Review. Lasers Surg Med 17:2–31

    Article  CAS  PubMed  Google Scholar 

  48. Cao Y, He XW, Gao Z, Peng L (1999) Fluorescence energy transfer between acridine orange and Safranine T and its application in the determination of DNA, Talanta 49:377–383

  49. Munza A, Sanchez-Cortes S, Garcia-Ramos JV, Guisan JM, Alfonso C, Rivas G (2000) Interaction of the antitumor drug 9-aminoacridine with guanidinobenzoatase studied by spectroscopic methods: A possible tumor marker probe based on the fluorescence exciplex emission, Biochemistry 39:10557–10565

  50. Zhang G, Pang Y, Shuang S, Dong C, Choi MMF, Liu D (2005) Spectroscopic studies on the interaction of Safranine T with DNA in β-cyclodextrin and carboxymethyl-β-cyclodextrin, J. Photochem. Photobiol. A 169:153–158

  51. Bi SY, Qiao CY, Song DQ, Tian Y, Gao DJ, Sun Y, Zhang HQ (2006) Study of interactions of flavonoids with DNA using acridine orange as a fluorescence probe. Sens Actuat B-Chem 119:199–208

    Article  CAS  Google Scholar 

  52. Halliwell B, Gutteridge JMC (1998) Free radicals in biology and medicine, 3rd edn. Oxford University Press, Oxford

    Google Scholar 

  53. Young IS, Woodside JV (2001) Antioxidants in health and disease. J Clin Pathol 54:176–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Heim KE, Tagliaferro AR, Bobilya DJ (2002) Flavonoid antioxidants: chemistry, metabolism and structure-activity relationship. J Nutr Biochem 13:572–584

    Article  CAS  PubMed  Google Scholar 

  55. Chelladurai KS, Christyraj JDS, Rajagopalan K, Yesudhason BV, Venkatachalam S, Mohan M, Vasantha NC, Christyraj JRSS (2021) Alternative to FBS in animal cell culture - An overview and future perspective. Heliyon 7:e07686

    Article  CAS  Google Scholar 

  56. Morgan JF, Morton HJ, Parker RC (1950) Nutrition of animal cells in tissue culture. I. Initial studies on a synthetic medium, Proc. Soc. Exp. Biol. Med. 73:1–8

  57. Nakano E, Mushtaq S, Heath PR, Lee ES, Bury JP, Riley SA, Powers HJ, Corfe BM (2011) Riboflavin depletion impairs cell proliferation in adult human duodenum: identification of potential effectors. Dig Dis Sci 56:1007–1019

    Article  CAS  PubMed  Google Scholar 

  58. Danielyan KE (2013) Subcomponents of vitamine B complex regulate the growth and development of human brain derived cells. Am J Biomed Res 1:28–34

    Article  CAS  Google Scholar 

  59. Hirano K, Namihira M (2017) FAD influx enhances neuronal differentiation of human neural stem cells by facilitating nuclear localization of LSD1. FEBS Open Bio 7:1932–1942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhang XF, Shen W, Gurunathan S (2016) Silver Nanoparticle - Mediated Cellular Responses in Various Cell Lines: An in Vitro Model. Int J Mol Sci 17:1603. https://doi.org/10.3390/ijms17101603

    Article  CAS  PubMed Central  Google Scholar 

  61. Stoehr LC, Gonzalez E, Stampfl A, Casals AE, Duschl A, Puntes V, Oostingh GJ (2011) Shape matters: Effects of silver nanospheres and wires on human alveolar epithelial cells. Part Fibre Toxicol 8:425–430

    Article  CAS  Google Scholar 

  62. Luther EM, Koehler Y, Diendorf J, Epple M, Dringen R (2011) Accumulation of silver nanoparticles by cultured primary brain astrocytes. Nanotechnology 22:375101

    Article  PubMed  CAS  Google Scholar 

  63. de Almeida MS, Susnik E, Drasler B, Taladriz-Blanco P, Petri-Fink A, Rothen-Rutishauser B (2021) Understanding nanoparticle endocytosis to improve targeting strategies in nanomedicine. Chem Soc Rev 50:5397–5434

    Article  Google Scholar 

  64. Wu M, Guo H, Liu L, Liu Y, Xie L (2019) Size-dependent cellular uptake and localization profiles of silver nanoparticles. Int J Nanomed 14:4247–4259

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was done within the research programme “Quantum Chemistry and Molecular Structure” of the Institute of Physical Chemistry “Ilie Murgulescu” of the Romanian Academy. The authors thank Dr. Ana-Maria Seciu-Grama, from the National Institute of R&D for Biological Sciences, Bucharest, Romania, for flow cytometry measurements.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariana Voicescu.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

CRediT authorship contribution statement

Conceptualization, M.V.; Methodology, M.V, O.C, M.A.,V.S.M., D.C.C; Experimental Data, M.V., R.T.; M.A., J.M. C-M, V.S.M., D.C.C; Data Analysis, M.V, O.C, L.M.; Writing – Original Draft Preparation, M.V.; Writing – Review & Editing, M.V., O.C.; Visualization, M.V.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voicescu, M., Craciunescu, O., Calderon-Moreno, J.M. et al. Fluorescent Flavin/PVP-Coated Silver Nanoparticles: Design and Biological Performance. J Fluoresc 32, 1309–1319 (2022). https://doi.org/10.1007/s10895-022-02909-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-022-02909-2

Keywords

Navigation